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Abstract

We provide a logical reformulation of the action description
language C+ from (Giunchiglia et al. 2004) in the form of
a dynamic causal calculus that possesses a (dynamic) non-
monotonic semantics, and describe a logical system of dy-
namic causal inference that constitutes a complete description
of the logic that is adequate for this dynamic calculus.

Introduction
A wide range of action theories have been suggested in
the AI literature, starting from direct representations in a
first-order classical language (such as the situation calcu-
lus, event calculus and TAL) and ending with higher-order
action description languages (Gelfond and Lifschitz 1998),
as well as representations of actions in general formalisms
of propositional dynamic logic (PDL) and linear temporal
logic (LTL). In fact, one of the useful ways to cope with this
diversity and, in particular, to provide for transferability re-
sults among different theories involves designing some fur-
ther, still more general representations that subsume existing
ones as special cases (see, e.g., (Thielscher 2011)).

Unlike general descriptions of temporal dynamics in var-
ious logical formalisms, action theories in AI have to deal,
however, with two quite specific reasoning tasks, namely the
prediction task (what are the results of a given sequence of
actions from an initial state) and the planning task (what se-
quence of actions could lead from an initial state to a tar-
get goal state). These reasoning tasks immediately lead to a
triple of famous problems, known as the frame, ramification
and qualification problems (see (Shanahan 1997)). It was
realized quite early that classical logic, taken by itself, en-
counters difficulties in resolving these problems that would
yield an efficient and versatile representation of actions and
changes in the world.

In recent years a dominant approach to solving these prob-
lems has been based, in one form or another, on causal rea-
soning. Given a set of action and causal rules describing the
domain, the causal approach employs a distinction between
facts that hold in a situation versus facts that are caused
(explained) by other facts and the rules. The correspond-
ing causal closure assumption (Reiter 2001) amounts to the
requirement that all facts that hold in a situation should be
either caused by other occurrent facts, or else preserve their

truth-values in time (due to the accompanying inertia prin-
ciple). A direct incorporation of such causal assertions into
the language of the situation calculus has been proposed in
(Lin 1995; 1996), and has been shown to provide a natural
account of both the frame and ramification problems.

An elaborate formalization of the above principles of
causal reasoning has been given in (Giunchiglia et al. 2004).
The formalism of (Giunchiglia et al. 2004) is a multi-layered
representation framework. As its top layer, it employs a
(causal) action description language C+. Domain descrip-
tions in this language are instantiated first by assigning tem-
poral stamps i : to propositions and then by incorporating
the resulting descriptions into an atemporal causal calcu-
lus. The models of the resulting causal theories are viewed
then as intended models of the source, higher-level action
descriptions.

In this study we will suggest a dynamic generalization of
the causal calculus that will provide a direct logical descrip-
tion for the language C+. In addition, we will describe a
logical system of dynamic causal inference that constitutes
a concise logical framework for causal reasoning in dynamic
domains.

The plan of the paper is as follows. After a brief overview
of the original (atemporal) causal calculus and its use in the
framework of (Giunchiglia et al. 2004), we will introduce a
dynamic causal calculus as a direct reformulation of the ac-
tion description language C+. As a second step, we will de-
scribe a logical formalism of dynamic causal inference that
will be shown to constitute a precise logic for causal reason-
ing in action domains.

The Causal Calculus
Throughout this study, we will assume that our basic lan-
guage is a classical propositional language with the usual
connectives and constants {∧,∨,¬,→, t, f}. � and Th will
stand, respectively, for the classical entailment and the asso-
ciated closure operator. In what follows, we will also iden-
tify propositional interpretations (‘worlds’) with the sets of
propositional formulas that hold in them.

A causal rule is a rule of the formA⇒B, whereA andB
are classical propositions. We will informally interpret such
rules as saying plainly ”A causes B”.1

1(Giunchiglia et al. 2004) adopted a more cautious informal



By a causal theory we will mean an arbitrary set of causal
rules. For a set u of propositions and a causal theory ∆,
we will denote by ∆(u) the set of all propositions that are
caused by u in ∆, that is,

∆(u) = {A | B⇒A ∈ ∆, for some B ∈ u}

Then the nonmonotonic semantics of a causal theory can
be defined as follows.
Definition 1. A world (= propositional interpretation) α is
an exact model of a causal theory ∆ if it is a unique model
of ∆(α). The set of exact models forms a nonmonotonic
semantics of ∆.

The above semantics of causal theories coincides, in ef-
fect, with the semantics for such theories, described in
(Giunchiglia et al. 2004) (see also (McCain and Turner
1997)). It can also be verified that exact models of a causal
theory are precisely the worlds that satisfy the following
fixed-point condition:

α = Th(∆(α)).

Accordingly, exact worlds are propositional models that
are not only closed with respect to the causal rules, but also
such that any proposition that holds in them is caused (that
is, explained) ultimately by other propositions.

Causal Inference Relations
Though the original causal calculus has been defined only
semantically, (Bochman 2004) has described a logical for-
malism of causal inference relations, which has been shown
to provide a complete formalization of logical (monotonic)
reasoning in causal theories. From a logical point of view,
causal inference relations are defined as sets of causal rules
that are required to satisfy almost all the usual postulates
of classical inference, except Reflexivity A⇒A. The latter
feature has turned out to be essential for an adequate repre-
sentation of causal reasoning.
Definition 2. A causal inference relation is a relation⇒ on
the set of propositions satisfying the following conditions:
(Strengthening) If A � B and B⇒C, then A⇒C;
(Weakening) If A⇒B and B � C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;
(Or) If A⇒C and B⇒C, then A ∨B⇒C;
(Cut) If A⇒B and A ∧B⇒C, then A⇒C;
(Truth) t⇒ t;
(Falsity) f⇒ f .

The rule Or permits reasoning by cases; this feature can
be seen as one of the main advantages of causal reasoning as
compared with, say, default logic. It indicates that the causal
logic is an objective (extensional) logical system, a system
of reasoning about the world. In this respect, it is similar
to classical logic, and distinct from modal (intensional) for-
malisms that deal primarily with beliefs and knowledge.

Yet another important feature of causal inference stems
from the validity of the following rule:

reading of such rules, namely ”If A holds, then B is caused”.

(Coherence) If A⇒¬A, then A⇒ f .
The above rule says that if a proposition causes propo-

sitions that are incompatible with it, then it is causally in-
consistent. This feature indicates, in effect, that the above
notion of causal inference is atemporal. For example, the
rule p ∧ q⇒¬q cannot be understood as saying that p and
q jointly cause ¬q (afterwards) in a temporal sense; instead,
by Coherence it implies p ∧ q⇒ f , which means, in effect,
that p ∧ q cannot hold. Just as in classical logic, however, a
representation of temporal domains in this formalism can be
obtained by adding explicit temporal arguments to proposi-
tions; this is what has been actually done in the action de-
scription framework of (Giunchiglia et al. 2004).

A possible worlds semantics
A semantic interpretation of causal inference relations can
be given in terms of ordinary possible worlds (or Kripke)
models (W,R, V ), where W is a set of possible worlds, R a
binary accessibility relation on W , and V a function assign-
ing each world a propositional interpretation. Intuitively,
Rαβ means that α is an initial state, and β a possible output
state of a causal process. A Kripke model is quasi-reflexive
if it satisfies the condition that if Rαβ, then Rαα.
Definition 3. A rule A⇒B is valid in a Kripke model
(W,R, V ) if, for any worlds α, β such that Rαβ, if A holds
in α, then B holds in β.

By a set of causal rules determined by a Kripke model we
will mean the set of rules that is valid in it. It can be verified
that such a set satisfies all the postulates of causal inference.
Moreover, as for other modal formalisms, a suitable con-
struction of a canonical semantics allows us to obtain the
corresponding completeness result:
Proposition 1. A set of causal rules forms a causal infer-
ence relation if and only if it is determined by some quasi-
reflexive Kripke model.

As a by-product, the above semantics immediately sanc-
tions a simple modal representation of causal rules. Namely,
let � be the usual modal operator definable in a possible
worlds model: �A holds in α iff A holds in all β such
that Rαβ. Then the validity of A⇒B in a possible worlds
model is equivalent to validity of the formula A → �B.
Consequently, causal rules are representable by modal for-
mulas of the latter form. As a matter of fact, this modal
representation has actually been used in many approaches to
formalizing causation in action theories (see, e.g., (Geffner
1990; Turner 1999; Giordano, Martelli, and Schwind 2000;
Zhang and Foo 2001)).

The nonmonotonic semantics of causal inference
Causal inference relations are just a special kind of causal
theory, so they also possess a nonmonotonic semantics.
Moreover, due to the logical properties of causal inference,
the description of this nonmonotonic semantics can be sim-
plified as follows.

To begin with, we extend causal rules to rules having ar-
bitrary sets of propositions as premises: given a causal in-
ference relation ⇒ and an arbitrary set u of propositions,



u⇒A will be taken to hold if, for some finite a ⊆ u,∧
a⇒A belongs to ⇒. C(u) will denote the set of propo-

sitions caused by u, that is C(u) = {A | u⇒A}. Then a
world α is an exact world of a causal inference relation if
and only if

α = C(α).

Given an arbitrary causal theory ∆, we will denote by
⇒∆ the least causal inference relation that includes ∆. Now,
it has been shown in (Bochman 2003) that ∆ has the same
nonmonotonic semantics as⇒∆, which means that the rules
of causal inference are adequate for reasoning with respect
to the nonmonotonic semantics of causal theories. More-
over, it has been shown that causal inference relations con-
stitute in this respect a maximal such logic (see (Bochman
2004) for details).

An overview of C+
Being restricted to the level of propositions, the action de-
scription language C+ is based on three kinds of proposi-
tional atoms. More precisely, propositional atoms are par-
titioned first into action atoms and fluent atoms, while the
latter are further partitioned into simple and statically de-
termined fluents. However, if we will ignore for a moment
these distinctions, action descriptions in C+ involve only the
following two kinds of rules, where A,B,C are classical
propositional formulas:

• Static laws and action dynamic laws, which are expres-
sions of the form

caused B if A;

• Fluent dynamic laws - expressions of the form

caused B if A after C.

An action description in C+ is defined as a set of such
causal laws.

Interpretations and models of action descriptions in C+
are defined, however, indirectly by transforming them into
plain causal theories. To begin with, for every natural num-
ber m, an action description D is transformed into an atem-
poral causal theory Dm as follows. First, ‘time stamps’ i:
for i ∈ {0, . . . ,m} are inserted in front of every occurrence
of every atom in propositional formulas. Then any static law
or an action dynamic law is translated into the following set
of causal rules, for every i ≤ m:

i : A⇒ i : B,

where i : F is the result of inserting i: in front of every oc-
currence of every atom in a formula F . Similarly, any fluent
dynamic law is translated into the following set of causal
rules:

(i : C) ∧ (i+ 1 : A)⇒ i+ 1 : B,

for every i < m.
Finally, in order to deal with initial states, for every simple

fluent literal l, the following causal rules are added to the
resulting causal theory:

0 : l⇒ 0 : l.

These rules make simple literals exogenous (self-
explained) in the initial state. As a result, we obtain an or-
dinary causal theory, and the exact models of this theory are
considered to be the models of the original action descrip-
tion. Such models can be visualized as histories of length m
of the source dynamic domain.

(Giunchiglia et al. 2004) contains also a more general se-
mantic construction, according to which an action descrip-
tionD in C+ describes, in effect, a transition model in which
states are the models of the ‘minimal’ (static) causal the-
ory D0, while transitions correspond precisely to the mod-
els of the minimal ‘dynamic’ causal theory D1. It has been
shown in (Giunchiglia et al. 2004, Proposition 8) that, for
any m > 0, models of a causal theory Dm are exactly histo-
ries (paths) of length m in this transition model.

Dynamic Causal Calculus
In this section we are going to provide a logical refor-
mulation of the action description language C+ and its
semantics. As a first step, we will use a more conve-
nient, ‘logic-oriented’ notation, namely, we will uniformly
rewrite both static and action dynamic laws of the form
caused B if A as plain (static) causal rules A⇒B.a static
law caused B if A as a familiar causal rule A⇒B, while
a dynamic law caused B if A after C will be written as a
rule of the form

C.A⇒B.

We will call such rules dynamic causal rules. Moreover,
extending our previous re-interpretation of atemporal causal
rules, we will assign a more ‘active’ informal reading to such
rules, namely “After C, A causes B”.
Remark. As a matter of fact, the above dynamic causal rules
are somewhat ambiguous from a syntactic point of view. On
a most abstract level, such a rule can be viewed simply as
an instantiation of a primitive ternary propositional opera-
tor. There are, however, at least two other, more articulated
possibilities. Thus, a dynamic causal rule could be viewed
as a plain causal rule A⇒B that is conditioned by a pre-
ceding context C. In fact, this ‘parsing’ agrees with the
informal reading of such rules, given above. Furthermore,
we will see below that this understanding of dynamic causal
rules as conditional static rules provides a natural justifica-
tion for the postulates of the associated dynamic causal in-
ference that will be given below. Still, a different possibil-
ity consists in viewing such rules as ordinary, binary causal
rules with complex premises consisting of pairs of proposi-
tions (C,A). Again, we will see later that this reading can
also be given a formal support, due to a possible translation
of such rules as propositions of the form (C ◦ A) → B in
arrow logic.

In the version of the dynamic causal calculus that we will
present in this study, we will make one further step and iden-
tify the static rules A⇒B with dynamic rules of the form
t.A⇒B. This will make the above dynamic causal rules
the only kind of rules of the dynamic calculus. The conse-
quences and variations created by this identification will be
discussed below.



As before, a dynamic causal theory will be defined as a
set of dynamic causal rules. As a next step, we are going to
provide a direct description of the nonmonotonic semantics
of such causal theories. The guiding principle behind this
nonmonotonic semantics will be a thorough enforcement of
the principle of universal causation, according to which any
state of a dynamic model should be explained (i.e., caused)
by preceding states and causal rules.

Given a dynamic causal theory ∆ and worlds α, β, we
will denote by ∆(α.β) the set

{C | A.B⇒C ∈ ∆ for some A ∈ α,B ∈ β.}
Definition 4. • A pair (α, β) of worlds will be called an

exact transition with respect to a dynamic causal theory
∆ if β is the unique model of ∆(α.β), that is

β = Th(∆(α.β)).

• An exact transition model of a dynamic theory ∆ is a set
of worlds I such that, for any β ∈ I there is α ∈ I such
that (α, β) is a an exact transition wrt ∆.
An exact transition is a transition between two states in

which the resulting state is fully explained (caused), given
the preceding state and the causal laws of the domain. It is
important to note that if (α, β) is an exact transition, then
the output world β is always closed with respect to the static
rules (for our definition of the latter). Moreover, it can be
easily verified that it will be a state in accordance with the
definition of (Giunchiglia et al. 2004).
Remark. As a matter of fact, our definition of an exact tran-
sition almost coincides with the corresponding definition of
a causally explained transition, given in (Giunchiglia and
Lifschitz 1998) for a more restricted action description lan-
guage C, a predecessor of C+. In fact, the only difference
between the two definitions is that (Giunchiglia and Lifs-
chitz 1998) required further that both the initial and result-
ing states of such a transition should be closed with respect
to the static causal laws. On our construction, this additional
requirement is accounted for, respectively, as a by-product
of our definition of static causal rules on the one hand (for
the resulting states), and an exact transition model on the
other hand (for the initial states).

An exact transition model of a dynamic causal theory is
defined above as a set of states in which every state is caused
as a result of some exact transition. Consequently, any state
of this model will be a state in the sense of (Giunchiglia et
al. 2004), so any exact model in our sense will correspond
to a model (transition system) in the sense of (Giunchiglia
et al. 2004). Still, our definition of the dynamic seman-
tics of causal theories is apparently more restrictive, since
it requires that any state of the model, including the ini-
tial one, should be an output of some transition, whereas
(Giunchiglia et al. 2004)) adopted more relaxed require-
ments on initial states. Roughly, it required only that such
states should be closed with respect to the static laws (which
are completely separated from dynamic ones) and, in addi-
tion, that any statically determined fluent literal that holds in
a state should be caused by the static laws.

It seems that for a proper assessment of the above discrep-
ancy, we should distinguish two aspects of the difference,

conceptual and practical. On the conceptual side, we believe
that an ultimate reason for imposing even the above minimal
restrictions on initial states stems from a broad requirement
that such states should be somehow accessible in accordance
with the laws of the domain. In other words, any state of a
dynamic system should be consistently viewed as a result of
some legitimate transition (including possible ‘loops’ in this
state). Speaking more generally, we contend that static laws
and constraints should be viewed as constraints that are ef-
fective after every legitimate transition, and vice versa, any
constraint that happens to hold hold after any possible tran-
sition should be considered as a static law of the domain.

Turning to the practical side of the difference, it turns
out that for a broad class of dynamic descriptions (includ-
ing all the examples given in (Giunchiglia et al. 2004)), we
can guarantee in advance that if a state satisfies the above-
mentioned ‘static’ constraints of C+, it can always be con-
structed as an output of some exact transition. Taking only
one simple example, if we will assume that α is an ar-
bitrary state of what has been called a simple domain in
(Giunchiglia et al. 2004), then it can be ‘reconstructed’ as a
result of an exact transition (α1, α), where α1 has the same
fluent literals as α, and no action atom holds in α1. This
transition will be exact because simple literals in α will then
be caused by inertia rules, statically determined literals will
be caused by the corresponding static rules, while the action
atoms will be self-explainable (exogenous). More complex
cases (e.g., non-inertial fluents) may require more elabo-
rate constructions, including, if necessary, adding some new
auxiliary actions to the vocabulary. We will postpone fur-
ther discussion and elaborations on this to another occasion.
Still, the main conclusion that we would like to make at
this point is that, for a large class of action descriptions,
our semantics coincides, in effect, with the semantics of
(Giunchiglia et al. 2004). However, in contrast to the action
description language C+, our dynamic calculus imposes no
syntactic restrictions on the occurrences of fluent or action
atoms in formulas appearing in dynamic causal rules.

Dynamic Causal Inference
The framework of the dynamic causal calculus, described
in the preceding section, is a typical example of a non-
monotonic formalism; conclusions that can be obtained on
the basis of the exact transition semantics can change non-
monotonically if we add some further facts or causal rules
to the original dynamic causal theory. Still, as with other
formalisms for nonmonotonic reasoning (see (Bochman
2011)), the causal rules of the dynamic causal calculus pre-
suppose a certain underlying logic that agrees with the above
nonmonotonic semantics. Such a logic will provide us with
a formal description of the associated dynamic causal infer-
ence.

By a dynamic causal inference relation we will mean a set
of dynamic causal rules of the form A.B⇒C that satisfies
the conditions described below.

The first group of postulates states that a set of dynamic
causal rules with a fixed first premise (D) should satisfy the
postulates of an ‘ordinary’ causal inference:



(Strengthening) If A � B and D.B⇒C, then D.A⇒C;
(Weakening) If D.A⇒B and B � C, then D.A⇒C;
(And) If D.A⇒B and D.A⇒C, then D.A⇒B ∧ C;
(Or) If D.A⇒C and D.B⇒C, then D.A ∨B⇒C;
(Cut) If D.A⇒B and D.A ∧B⇒C, then D.A⇒C;
(Truth) t.t⇒ t;
(Falsity) t.f⇒ f .

In view of the above postulates, dynamic causal rules
C.A⇒B can be seen as ordinary, binary causal rules
A⇒B that are conditioned by the preceding context C.

The next two postulates describe the logical properties of
this preceding context in dynamic causal rules:

(Left-Str) If A � B and B.D⇒C, then A.D⇒C;
(Left-Or) If A.D⇒C and B.D⇒C, then A∨B.D⇒C.

The combined effect of the above pair of postulates is that
the associated semantic interpretation of dynamic causal in-
ference (described in the next section) will be again a kind of
a possible world semantics, in which both the two premises
and conclusion of a dynamic causal rule are evaluated with
respect to worlds (complete states).

Finally, the last postulate is a formal expression of the
requirement that any state that can be an input of some tran-
sition, is also an output state of at least one transition:
(Transition) If t.A⇒ f , then A.t⇒ f .

Recall that we have decided to identify static causal laws
A⇒B with dynamic causal laws of the form t.A⇒B.
Then the above postulate can be rewritten as
(Transition1) If A⇒ f , then A.t⇒ f .

On this reformulation, the above postulate stipulates, in
effect, that any input state of a consistent transition should
be (statically) causally consistent. Combined with the other
postulates, this will immediately imply that both the input
and output state of a transition should be closed with respect
to the valid static laws.

A possible worlds semantics
A possible worlds semantics of dynamic causal relations can
be obtained by generalizing an accessibility relation on pos-
sible worlds to ternary relations.

A causal possible world model of dynamic causal infer-
ence is a triple (W,R, V ), where W is a set of possible
worlds, R a ternary accessibility relation on W , and V a
function assigning each world a propositional interpretation.
The accessibility relation will be required to satisfy the fol-
lowing two conditions:

(Quasi-reflexivity) If Rαβγ, then Rαββ.
(Transition) If Rαββ, then Rδαα, for some δ ∈W .

Definition 5. A ruleA.B⇒C is valid in a model (W,R, V )
if, for any worlds α, β, γ such that Rαβγ, if A holds in α
and B holds in β, then C holds in γ.

Given the above definition of validity, it is easy to verify
the following

Lemma 2. The set of dynamic causal rules valid in a causal
possible world model forms a dynamic causal inference re-
lation.

Moreover, using a suitable construction of a canonical se-
mantics for a dynamic causal inference relation, the follow-
ing completeness result can be established:

Theorem 3. A set of dynamic causal rules forms a dynamic
causal inference relation if and only if it is determined by a
causal possible world model.

Proof. (A sketch) Due to the connection between dynamic
causal rules and the original, atemporal causal rules, the
proof is a relatively straightforward generalization of the
corresponding completeness proof for causal inference re-
lations, given in (Bochman 2004, Theorem 7.4). More pre-
cisely, given a dynamic causal relation⇒, we can construct
the corresponding canonical model (W,Rc) by taking W to
be the set of all maximal consistent sets of propositions, and
defining Rc as follows:

Rcαβγ ≡ C(α.β) ⊆ β ∩ γ.

Notice that this definition directly implies quasi-
reflexivity of Rc. Moreover, the use of the Transition postu-
late allows us to prove the transition property of Rc. Finally,
it can be shown that A.B⇒C holds for the source dynamic
causal relation if and only if it is valid in (W,Rc).

Remark. One of the interesting consequences of the above
semantic characterization of dynamic causal inference is
that, similarly to a straightforward modal translation of ordi-
nary causal rules as formulas of the formA→ �B, dynamic
causal rules can be represented as formulas of arrow logic
(see, e.g., (Venema 1997)). As a matter of fact, one of the
principal motivations behind arrow logic has also consisted
in providing an abstract description of dynamic (transition)
models (cf. (van Benthem 1994)). Moreover, semantic in-
terpretation of arrow logic is also based on a possible world
semantics with a ternary accessibility relation, and it can be
easily verified that, by the above semantic description, a dy-
namic causal rule A.B⇒C turns out to be equivalent to a
formula

A ◦B → C

of arrow logic, where ◦ is a binary ‘arrow conjunction’ op-
erator having the following semantic interpretation: A ◦ B
holds in a world α if and only if there are worlds β, γ such
that Rβγα, A holds in β and B holds in γ.

Correspondences
Recall that a dynamic causal theory is an arbitrary set of dy-
namic causal rules. For any dynamic causal theory ∆ there
exists a least dynamic causal inference relation that includes
∆. We will denote it by⇒∆. Clearly, ⇒∆ is the set of all
dynamic causal rules that can be derived from ∆ using the
postulates of dynamic causal inference.

As before, we will extend the notation of dynamic causal
rules to sets of propositional formulas in premises: for sets
u, v of propositional formulas, u.v⇒Awill be taken to hold



if
∧
a.
∧
b⇒A, for some finite a ⊆ u, b ⊆ v. In addition,

C(u.v) will denote the set of propositions {A | u.v⇒A}.
Due to the logical properties of a dynamic causal infer-

ence relation, the definition of an exact transition can now
be simplified, namely a pair of worlds (α, β) will be an ex-
act transition with respect to a dynamic causal inference re-
lation if and only if

β = C(α.β).

Then the following key result of this study shows, in ef-
fect, that the logic of causal dynamic inference is adequate
for reasoning with respect to the exact semantics of dynamic
causal theories, since it preserves the latter.

Theorem 4. The exact transition models of a dynamic
causal theory ∆ coincide with the exact transition models
of⇒∆.

Proof sketch. It can be shown that if C∆ is the provability
operator of⇒∆, then, for any worlds α, β, if C∆(α.β) is a
consistent set, then it coincides with Th(∆(α.β)). Conse-
quently, α = C∆(α.β) iff α = Th(∆(α.β)), and therefore
exact transitions of ∆ will coincide with exact transitions of
⇒∆. Hence the result.

Moreover, it can be shown that the logic of causal dy-
namic inference constitutes a maximal logic that is adequate
for reasoning with exact causal models.

Definition 6. Two dynamic causal theories ∆ and Γ will be
said to be strongly equivalent if, for any set Φ of causal rules,
∆ ∪ Φ has the same exact models as Γ ∪ Φ.

Strongly equivalent theories are ‘equivalent forever’, that
is, they are interchangeable in any larger causal theory with-
out changing the nonmonotonic semantics. Consequently,
strong equivalence can be seen as an equivalence with re-
spect to the background monotonic logic of causal theories.
And the next result shows that this logic is precisely the logic
of dynamic causal inference.

Theorem 5. Dynamic causal theories ∆ and Γ are strongly
equivalent if and only if⇒∆ =⇒Γ.

The above result states that dynamic causal theories are
strongly equivalent if and only if each of them can be ob-
tained from the other using the postulates of dynamic causal
inference. Again, the proof of this result can be established
as a certain ‘dynamic’ generalization of the corresponding
proof for the original causal calculus that has been given in
(Bochman 2004).

Summary and Perspectives
The primary objective of this study consisted in showing that
causal reasoning in dynamic action domains can be given
a direct and concise logical representation. The action de-
scription language C+ has turned out to be especially suit-
able for this purpose, first of all because it has been formu-
lated explicitly as a causal language and, on the other hand,
because of the wealth of representation capabilities of this
language as a working action theory in AI that have been
demonstrated in (Giunchiglia et al. 2004). Taken jointly

with this practical support, the results of the present study
strongly indicate that a theory of dynamic causal inference
can be viewed as a self-subsistent logical theory that pro-
vides an adequate and comprehensive representation frame-
work for reasoning in dynamic domains. The study creates
also obvious incentives for broader questions about the role
and scope of causation in commonsense reasoning, as well
as in knowledge representation for AI.

Causation has always been one of the most discussed con-
cepts in the philosophy of science. It is intimately related to
practically all notions that are essential both for a common-
sense and scientific view of the world, such as laws, coun-
terfactuals, explanation and abduction. On the other hand,
causation and related notions have shown to be extremely
elusive and problematic concepts. Efforts of many philoso-
phers and logicians in the past have been focused on a for-
mal, logical explication of these notions, but the task has
turned out to be surprisingly difficult. Furthermore, start-
ing with David Hume, an influential line of philosophical
thought has argued, in effect, that causation should be ex-
pelled from the language of Science and Logic.

In recent years, however, we witness a revival of interest
in the concept of causation, accompanied with new, more
practical, insights about its role in our reasoning. Most
prominent in this respect is Pearl’s theory of causal reason-
ing (Pearl 2000) and its applications in statistics, economics,
cognitive and social sciences.

An important alternative source of the new understanding
of causation and its role in our reasoning comes from Ar-
tificial Intelligence, especially from theories of action and
change. Though existing causal theories in this area do
not always agree with a commonsense view of causation,
they have provided a working concept of causation that has
turned out to be crucial for singling out intended models
of commonsense action descriptions. Moreover, they have
made especially vivid the fact that causal reasoning, that
is, asking why and seeking explanations, is germane to our
reasoning about the world. These theories have also made
evident that, though causal reasoning includes an important
logical part, it is not reducible to a plain logical derivation
in some ingenious causal logic. Instead, causal reasoning
should be viewed as an important case of general nonmono-
tonic (assumption-based) reasoning. Accordingly, the tools
and formalisms of nonmonotonic reasoning should hope-
fully provide us with a more adequate understanding of the
concept of causation itself.
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