
Becoming Different:
A Language-Driven Formalism for Commonsense Knowledge

James F. Allen1,2 and Choh Man Teng1

1Institute for Human and Machine Cognition, Pensacola FL 32502 2University of Rochester, Rochester NY 14627
{jallen, cmteng}@ihmc.us

Abstract
In constructing a system for learning commonsense
knowledge by reading online resources for word definitions,
a key challenge is to develop a formalism rich and
expressive enough to capture commonsense concepts
expressed in natural language. Derivations based on natural
language impose strong requirements on the nature of the
representation. Specifically, predicates should correspond
to word senses and their argument structures in the
language, and complex formulas should be constructed
compositionally in a way that parallels the structure of
language. To provide a suitable representation framework
we need to extend interval temporal logic in several ways,
including organizing time around objects rather than
predicates, and developing a theory of scales. As a driving
example, we analyze core meanings of the verbs change and
become and the adjective different and show, after
appropriate development of our formalism, how the desired
meaning of change can be derived from one of its
definitions in WordNet: become different.

 Introduction and Motivation
Many applications of Artificial Intelligence, and natural
language processing in particular, are hindered by a lack of
extensive commonsense knowledge bases. Vast amount of
knowledge is needed to understand language, as well as to
plan and reason about the world. Much of it is quite
mundane: if you fall asleep you become asleep; you use
keys to unlock doors; people don’t like pain. While it is
everyday ordinary stuff, such knowledge is critical if
systems are to achieve human-levels of deep understanding
of language.

While there have been some efforts to encode large
amounts of commonsense knowledge by hand, e.g., Cyc
(Lenat, 1995), SUMO (Niles and Pease, 2001), such efforts
barely make a dent in accumulating the knowledge that is
needed. Further, such efforts generally are expressed in
formal notations using predicates motivated by mathematics
rather than attempt to create a close link to the elements of
natural language (e.g, word meanings, semantic roles).

Our goal is to create most of the commonsense

knowledge base by reading. While recent efforts such as
NELL (Carlson et al., 2010) and TextRunner (Yates et al.,
2007) have been effective at collecting vast amounts of
knowledge about instances (e.g., Chicago is a city) and
semantic patterns (e.g., people kill people), the
commonsense knowledge we need is definitional in nature
to enable necessary entailments: e.g., kill means cause to
die; murder means kill intentionally; fall asleep means
change from awake to asleep. We are working on building
knowledge bases automatically by reading definitions (Allen
et al., 2013), starting with the definitions in WordNet
(Fellbaum, 1998). The goal of this paper is to describe the
formalism we have developed in order to facilitate the
construction of effective axioms directly from natural
language definitions. This requirement puts strong
constraints on the nature of the representation that we note
here and will develop further in the paper.

In many ways, this paper has similar goals and
motivations as those of Hobbs (2013). We both want to
axiomatize core commonsense notions of events. Some of
the differences are in the style of the formalism—we start
from an explicit interval temporal logic and build from there,
whereas Hobbs places eventualities as central and time plays
a secondary role. But the most important difference is our
emphasis on building a formalism that supports learning the
knowledge by reading. Whereas Hobbs does a hand analysis
of core verbs, such as cause and have, and identifies a few
core meanings that he argues subsume all the WordNet
senses, our goal is to axiomatize automatically most of the
WordNet senses directly from their definitions. We would
rather have a messy knowledge base that covers as much of
the subtleties of language and word senses as possible, rather
than developing a more minimal, but more abstract, theory.

We base our formalism on the one developed in Allen &
Ferguson (1994), henceforth AF, and Allen (1984), in which
events are formalized in an interval temporal logic in a way
that enables planning and reasoning. AF has reified events,
with functional relations capturing semantic roles and
arguments. For example, Jack lifted the ball (over interval t1)
is represented as

This work was supported in part by NSF grant IIS-1012205, ONR N000141210547 and James S. McDonnell Foundation 220020263.

∃e.(LIFT(e)∧(agent(e)=jack1)∧(affected(e)=ball1)∧(time(e)=t1))
While this is the underlying logic, as in AF, we usually
abbreviate such expressions as LIFT(jack1, ball1, t1, e) when
the specific roles are obvious. When using this abbreviation,
predicates might appear to have a varying number of
arguments, but this is just because of the abbreviation
convention and not a formal part of the logic. The
framework also builds from Allen’s interval logic of action
and time (Allen 1983, 1984), where time periods can be
related by Allen’s temporal relations. For this paper, we only
need the meets relation, written t1:t2 and “during or equal”,
written t1 ⊆ t2. A moment is an interval that has no true
subintervals and captures minimally perceptible moments in
time. Decomposable periods are often referred to as true
intervals. The predicate Moment allows us to distinguish
moments from true intervals. We also add the strong
constraint on our temporal models by asserting that all
intervals are constructed out of moments. This can be
captured by the simple axiom that every interval contains a
moment:

Discrete Time Axiom: ∀t. ∃ t’ ⊆ t. Moment(t’)

Representation and Linguistic Structure
The key driving constraint of this work is that the
representational framework should closely parallel linguistic
elements and structure. We believe this is essential to enable
learning conceptual knowledge by reading definitions.
Specifically, we require an equivalence between predicates
and functions in the knowledge base and word senses in the
language. The word senses correspond 1-1 to the predicates
and the arguments to these predicates correspond to the
linguistic arguments that the word senses may take. This will
allow us to introduce new predicates into the knowledge
base in a systematic and straightforward way based on the
words used.

The representation of events in AF satisfies this constraint
for verbs—the event predicates correspond to verb senses,
and the reified events allow the argument functions that
correspond directly to a verb’s semantic roles. Beyond
events though, we need some extensions. First, if we are to
maintain the close link between linguistic structure and the
representation, we need to reify predicates (e.g., adjective
meanings) so that they may serve as arguments to other
predicates. To distinguish such predicates from the formal
predicates in the logic we will call them property
predicates (see Table 1). Intuitively, property predicates
identify characteristics of the world that can be directly
perceived in a moment of time (e.g., at the present moment).
For instance, consider the sentence John’s mood changed
from happy to sad. There are three arguments to the event
predicate CHANGE: the object undergoing the change (John’s
mood), the prior state (happy) and the resulting state (sad).
By reifying property predicates, we can express this as:

CHANGE(mood(john), Happy, Sad, t, e).
While this is a natural mapping of the sentence meaning,
such statements cannot be made in classical first order logic

because predicates, such as Happy, cannot serve as
arguments to other predicates. While there might be some
technical tricks to try to avoid such a generalization of the
formalism, we will soon see additional reasons for why the
reified predicates are convenient for capturing commonsense
knowledge, particularly when representing scales.

We need one more significant change from AF to allow us
to stay true to the structures of language. Consider one
definition of change in WordNet: Become different. The
meaning of this expression is that an object that changes
becomes different from what it was before. We will spend
some time defining exactly what this means, but for now just
consider that the predicate Different needs to apply to the
same object twice, but at different times. One cannot express
such a relation if we can only associate times with predicates
or properties, as in AF. Rather, we need a more general logic
where terms, rather than the predicates, are temporally
qualified. Specifically, we introduce a new function that
takes the name of an object and a time and denotes that
object over that time, e.g., x@t represents “object x over
time t”. We refer to these as temporally situated objects.
Thus, John is Happy today is written as

 TRUEOF(john@today, Happy)
We need another predicate for binary relations. For example,
we would express I am different today from yesterday as:

TRUEOF2(me@yesterday, me@today, Different)
Such a proposition cannot be directly expressed using a
logic that only attaches time to the predicates.

The notion that objects are temporally situated and
properties are not is in stark contrast to standard temporal
logics in which objects are atemporal and properties change
over time. This view has been discussed in philosophy,
going back to before Whitehead (1929). We introduce a
predicate EXISTS that defines the temporal range of an
object, i.e., when the temporally situated object o@t exists.
For instance, if I was born in 1983, then EXISTS(me@1984)
and ~EXISTS(me@1982) both hold. Properties only hold on
temporally situated objects that exist:

Construct Formal Status Linguistic
correlate

Notation and
Example(s)

Notation and
Example(s)

Formal
Predicates

Predicates in the
logic none Small

caps TRUEOF

Event
predicates

Predicates in the
logic verb senses Small

caps CHANGE

Property
predicates

Terms that
denote properties

nouns and
adjective senses

Initial
caps

Happy,
Dog, ...

Property
functions

Functions that
apply to property

predicates

comparatives,
nominalizations

Start with
underbar

_er,
_ness, ...

Scales Terms that
denote scales

Some nouns
(e.g., size)

Small
caps

SIZE

Objects
Terms that

denote domain
objects

proper names,
noun phrases

Lower
case

john,
x,

father(x)
Table 1: Notation and Ontological Categories

∀t. (~Exists(o1@t1) ⊃ ∀P, o2, t2. (~TRUEOF(o1@t1, P)
 ∧ ~TRUEOF2(o1@t1, o2@ t2, P)
	
 	
 ∧ ~TRUEOF2(o2@ t2, o@t1, P)))

Property predicates are homogeneous, which means that if a
property holds over some time period I, then it holds over all
subintervals of I. We need to define this for both unary and
binary predicates:
Homogeneity Axioms1

(H1) ∀o, P, t . (TRUEOF(o@t, P)
 ≡ ∀t’ ⊆ t. TRUEOF(o@t’, P))
(H2) ∀o1, o2, P, t1, t2 . (TRUEOF2(o1@t1, o2@t2 , P)
 ≡ ∀t1’ ⊆ t1, t2’ ⊆ t2 . TRUEOF2(o1@t1’, o2@t2’ , P))
Note that for binary relations, homogeneity applies to all
possible pairs of subintervals associated with the objects.
This is a very strong constraint but necessary because there
is no constraint on how the time periods t1 and t2 relate to each
other.

As a final observation, note that we have two types of
negation, and we use the notation in AF. Weak negation, e.g,
~TRUEOF(b@t, Clear), simply states that TRUEOF(b@t,
Clear) does not hold —i.e., it is not the case that b is clear
over the entire time interval t, although it might be true over
a subpart of t. Strong negation, in contrast, uses a negation
function on property predicates, which we write as
TRUEOF(b@t, ¬Clear). As in AF, we have an axiom
defining strong negation:
∀o, P, t. (TRUEOF(o@t, ¬P) ≡ ∀t‘ ⊆ t. ~TRUEOF(o@t’, P))
Note that a direct corollary of this axiom is that strong
negation and weak negation are equivalent for moments:
∀o, P, t. (Moment(t)
 ⊃ (TRUEOF(o@t, ¬P) ≡ ~TRUEOF(o@t, P)))
Also, we get that for any moment either P or ¬P holds. This
can be extended to TRUEOF2 in the obvious way.

There is one more important constraint on the logic that
we need that was captured in AF’s discrete variation axiom
schema. This constraint prevents the possibility of properties
changing truth values infinitely often within an interval. The
philosophical underpinnings of this issue have been
discussed in for example (Hamblin, 1972).
Discrete Variation Axiom
∀o, P, t. (~TRUEOF(o@t, P)
 ≡ ∃ m ⊆ t. (Moment(m) ∧ TRUEOF(o@m, ¬P)))
With this in hand, we can then prove some useful theorems
about strong negation:
Negation Inverse Theorems
(N1) ∀o, P, t. (TRUEOF(o@t, ¬¬P) ≡ TRUEOF(o@t, P))
(N2) ∀o1, o2, P, t1, t2. (TRUEOF2(o1@t1, o2@t2 , ¬¬P)
 ≡ TRUEOF2(o1@t1, o2@t2, P))

In the rest of the paper we will develop these ideas further
by examining how we might define three related words:
change, become and different. We chose these three because
they are closely related in their definitions in WordNet. We
can explore the adequacy of our formalism by examining
how well their definitions capture the intuitive senses of the
words. Specifically, we examine a key definition of change
in WordNet, namely become different. A basic desideratum
of our formalism is that the definitions of become and
different should combine compositionally to capture what it
means to change. If we can accomplish this, we will have
some initial confidence that we have created a suitable
groundwork for acquiring, on a large scale, commonsense
knowledge by reading definitions automatically.

A First Attempt to Define Change
Intuitively we might define CHANGE and BECOME as follows.
A CHANGE event e, involving an object o over time t, from
property P1 to property P2, occurs when there are two time
intervals t1 and t2, such that P1 is true of o immediately
before t (over t1) and P2 is true of o immediately after t (over
t2).
∀o, P1, P2, t, e. (CHANGE(o@t, P1, P2, e)
 ≡ ∃ t1,t2. (t1:t:t2 ∧ TRUEOF(o@t1,P1) ∧ TRUEOF(o@t2,P2)))
Similarly, a BECOME event e, involving an object o over time
t, to property P, might be defined as follows:
∀o, P, t, e. (BECOME(o@t, P, e)
 ≡ ∃t1,t2. (t1:t:t2 ∧ TRUEOF(o@t1,¬P) ∧ TRUEOF(o@t2,P)))
The two events are clearly related in some way. We would
like whenever a CHANGE event obtains, a corresponding
BECOME event obtains: CHANGE(o@t, P1, P2, e1) ⊃ ∃ e2.

BECOME(o@t, P2, e2), or roughly, whenever o changes from
P1 to P2, we also have o becomes P2. However,
CHANGE(o@t, P1, P2, e1) only gives us, with appropriate
instantiations, TRUEOF(o@t2, P2) but not TRUEOF(o@t1,
¬P2) as is needed by the BECOME event. The two predicates
P1 and P2 in CHANGE are currently not constrained by any
relation.

Hobbs addresses this issue in his definition of CHANGE by
requiring that P1 and P2 must be contradictory, but this
constraint is too strong. For example, it will not allow us to
have a CHANGE event of an object changing from being
small to being tiny. After this change, we are tiny but at the
same time we are still small. To account for this subtlety, we
introduce a predicate combination function, “P but not Q”,
which might be realized in English as small but not tiny. We
write it as P\Q, where P and Q are property predicates, and
define it as:
∀o, P, Q, t. (TRUEOF(o@t, P\Q)
 ≡ TRUEOF(o@t, P) ∧ TRUEOF(o@t, ¬Q))
That is, P\Q is true of o whenever P but not Q is true of o.

1 Note that homogeneity only applies to properties that can be true over a moment. Thus, an expression such as “grew more than 5 inches”
cannot be captured with a property predicate as it can only be true over certain intervals. We do not have the space to discuss such
predicates here, and they are not important to the content of this paper.

Now we can reformulate the CHANGE predicate:
∀o, P1, P2, t, e. (CHANGE(o@t, P1, P2, e)
 ≡ ∃t1,t2.(t1:t:t2∧TRUEOF(o@t1,P1\P2)∧TRUEOF(o@t2,P2)))
Now we are able to express a change of an object from
being small to being tiny: small but not tiny is true of the
object before the change, while tiny is true of the object after
the change.

One can verify that this formulation also applies to
predicates that are inconsistent, as in CHANGE(light1@t, Red,
Green, e1), and that with this definition, CHANGE(o@t, P1,
P2, e1) ⊃ ∃ e2. BECOME(o@t, P2, e2) holds.

We have skirted one of the most crucial aspects of
CHANGE in our discussion so far. The relationship between
the pairs of predicates that can legitimately occupy the P1
and P2 slots in a change event is still under-constrained. The
formulation above allows, for example, a change of an
object from being red to being small. While this might be
acceptable from a logical point of view, it does not capture
intuitions in language about change. To tackle this problem
we need to develop a theory of predicate relatedness, which
is closely associated with the notion of scales, discussed
next.

 A Theory of Scales
There are three common types of scales, classified according
to the kind of relation between the elements on the scale:
interval (e.g. temperature as Celsius degrees), ordinal (e.g.
edibility as {raw, ripe, rotten}) and the degenerate abstract
scale in which no relations need exist between the values on
the scale (e.g. occupations as {Farmer, Chef, ...}).

A scale consists of a partially ordered set of values with
an associated function from objects over time intervals to
sets of values on the scale, and predicates corresponding to
sets of values on the scale. Typically, names of scales (and
scale functions) stem from nouns and scale value predicates
stem from adjectives in natural language. For example,
height(o@t) maps a temporally situated object to the set of
values on the HEIGHT scale that the object takes over period
t. A predicate such as Tall, corresponding to an adjective of
the same name, is true of objects whose height values over t
is in the upper range of the HEIGHT scale. We will define
scale value predicates more formally shortly.

In this example, the values in HEIGHT are fully ordered (it
is an interval scale), and the predicates Tall and Short are
captured by convex subsets of HEIGHT values. In general,
however, the scale values need not be fully ordered, and the
scale predicates need not be convex (e.g. the predicate
denoting “not of medium height”, which corresponds to “tall
or short”). Note that an object o may take different values on
a scale sc over a given time interval t. Thus, sc(o@t) is a set
of values. For the special case of moments, sc(o@m) is a
singleton for any moment m. The following relates the two:
∀sc, o, t. (sc(o@t) = ∪ sc(o@m): m ⊆ t ∧ Moment(m))
If sc is not applicable to o@t, then sc(o@t) is empty, for
example, mood(rock1@t) = ∅.

 We extend the ordering relation over values on a scale to
subsets of values on a scale: Subset S1 is less than subset S2
iff every value in S1 is less than every value in S2.

We can then define predicates for comparing temporally
situated objects. Defining equality on a scale is more
complex than one might think. We cannot use simple
equality over the scale value sets (that is, have an axiom
TRUEOF2(o1@t1, o2@t2, ScaleEqual(sc)) ≡ (sc(o1@t1) =
sc(o2@t2)) (*)) as there might be subintervals where they
were not equal. For example, my car accelerates from 0 to
60 mph while your car decelerates from 60 to 0 mph. Our
speeds take on the same set of values over the entire
mentioned time interval(s), but our speeds over any
subintervals are rarely equal. Thus (*) violates the
homogeneity requirement. We therefore adopt the following
stronger definition of ScaleEqual with explicit mention of the
subintervals.
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ScaleEqual(sc))
 ≡ ∀t1’ ⊆ t1, t2’ ⊆ t2. (sc(o1@t1’) = sc(o2@t2’)))
This consideration does not apply to the less-than comparison
between two temporally situated objects, but we include the
subinterval specification for uniformity:
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ScaleLessThan(sc))
 ≡ ∀t1’ ⊆ t1, t2’ ⊆ t2. (sc(o1@t1’) < sc(o2@t2’)))
As a consequence , i f TRUEOF2(o1@t1, o2@t2,
ScaleEqual(sc)), then both sc(o1@t1) and sc(o2@t2) map to an
identical singleton, since some subintervals are moments. If
TRUEOF2(o1@t1, o2@t2, ScaleLessThan(sc)), then sc(o1@t1)
and sc(o2@ t2) are disjoint.

Now, let us explore some of the nuances of these
definitions in a few examples.
Example 1 Growing up I was always the same height as my
sister at the same age (so I got all her hand-me-down
clothes).
∀t1, t2. (TRUEOF2(me@t1, sister@t2, ScaleEqual(AGE))
 ⊃ TRUEOF2(me@t1, sister@t2, ScaleEqual(HEIGHT)))
Here, I at age 3 was as tall as my sister at age 3; I at age 4
was as tall as my sister at age 4; etc.
Example 2 I have always been the same height as my sister
(so she can’t put things up on the shelves I can’t reach... and
neither can I).
∀t. (Moment(t) ∧ Exists(me@t) ∧ Exists(sister@t)
 ⊃ TRUEOF2(me@t, sister@t, ScaleEqual(HEIGHT)))
Here, I was as tall as my sister on March 25, 1992; on
December 31, 1999; etc. It is not the case that
TRUEOF2(me@t, sister@t, ScaleEqual(HEIGHT)) for arbitrary
time intervals t, since this assertion is only true if my height
and my sister’s height are identical and constant over the
entire t. We thus need to circumscribe the length of the time
interval under consideration: moments are suitable as our
heights cannot change within a moment. These moments
should further be constrained to be drawn from only when
both my sister and I are in existence so that it makes sense to
talk about our heights.

= {

We will make use of the following lemma in a later
section. It states that if two temporally situated objects are
not equal on a scale, then they have disjoint values on that
scale.
Lemma 1 (¬ScaleEqual)
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc))
 ⊃ (sc(o1@t1) ∩ sc(o2@t2) = ∅))

Scale Value Predicates
As discussed earlier scale value predicates typically
correspond to adjectives in natural language and they denote
(often but not necessarily convex) subsets of values on the
scale. They have additional properties with respect to their
scales. We use

 SCALEVALPRED(sc, Vp, +/-/ɸ)
to denote that the predicate Vp is a predicate with a positive
(+), negative (-) or neutral (ɸ) orientation on scale sc. (The
function of the orientation +/-/ɸ are needed for handling
comparatives and superlatives, but we have no room to
discuss these here in this paper.) Two examples are
S C A L E V A L P R E D (T E M P E R A T U R E , C o l d , -) a n d
SCALEVALPRED(MOOD, Happy, +). As a convenient
abbreviation, we define
 SCALEPRED(sc, Vp) ≡ ∃ x. SCALEVALPRED(sc, Vp, x)
when the orientation of the scale value predicate is not
important. Note also that most adjectives are ambiguous as
to which scales they refer to. We differentiate them by
adding the scale they refer to as a subscript. For example, the
adjective deep has at least three senses, captured by three
p r e d i c a t e s : S C A L E P R E D (D E P T H , D e e p D E P T H) ,
S C A L E P R E D (P R O F U N D I T Y , D e e p P R O F U N D I T Y) a n d
SCALEPRED(INTENSITY, DeepINTENSITY). We will sometimes
omit the subscript to Vpsc when the associated scale sc is
clear from the context. Otherwise if scale value predicates
are used without the subscript, then they remain ambiguous
between all their senses. In other words,
∀o, t, Vp. (TRUEOF(o@t, Vp) ∧ ∃ sc. SCALEPRED(sc, Vp)
 ≡ ∃ sc’. (SCALEPRED(sc’, Vp) ∧ TRUEOF(o@t, Vpsc’)))
An object may have more than one scale value predicate
holding on a scale. For example, an object may be both
small and tiny at the same time.. We may also have
composite scale value predicates, for example,
TRUEOF(o@t, SmallSIZE \ TinySIZE) would indicate that an
object is small but not tiny. In general, we may define a
scale value predicate for any “intuitive” subset of values on
a scale.

Let us define a function for the scale values corresponding
to a scale value predicate:
∀sc, Vp. (scaleVal(sc, Vp)
 ∪ sc(o@t): TRUEOF(o@t, Vp) if SCALEPRED(sc, Vp))
 ∅ otherwise)
Note in this definition, if Vp is not on the scale sc, then
scaleVal(sc, Vp) = ∅. We then have the following:

∀sc, Vp, o, t. (SCALEPRED(sc, Vp) ∧ sc(o@t) =∅
 ⊃ (TRUEOF(o@t, Vp) ≡ sc(o@t) ⊆ scaleVal(sc, Vp)))
and we can show
∀sc, Vp, o, t. (SCALEPRED(sc, Vp)
 ⊃ (TRUEOF(o@t, ¬Vp) ≡ sc(o@t) ∩ scaleVal(sc, Vp) =∅))
If Vp is a scale value predicate on scale sc, that is,
SCALEVALPRED(sc, Vp, +/-/ɸ), so is ¬Vp but with reverse
orientation: SCALEVALPRED(sc, ¬Vp, -/+/ɸ). Also if Vp1 and
Vp2 are scale value predicates on a scale sc, so is Vp1 \ Vp2
with the same orientation as Vp1.

Note that Lemma 1 can be stated in terms of scale value
predicates.
Corollary 2 (¬ScaleEqual)
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc))
 ⊃ ∃Vp. (SCALEPRED(sc, Vp) ∧ TRUEOF(o1@t1, Vp)
 ∧ TRUEOF(o2@t2, ¬Vp)))
Besides expressing scale values as adjectives, natural
language also describes quantitive scale values in terms of
units and quantities. We will not go into details here, but to
accommodate different unit systems on the same scale,
especially for interval scales, we introduce a mechanism to
produce scale value predicates by composing units and
quantities, written as <unit, quantity>. For example, “an
object o is worth 10 dollars at time t” can be expressed by
TRUEOF(o@t, <dollar, 10>WORTH). With arithmetic
operations we can define conversion rates between different
units, for example,
∀o, t, x. (TRUEOF(o@t, <inch, x>LENGTH)
 ≡ TRUEOF(o@t, <cm, 2.54x>LENGTH)).

Using Scales: Revisiting CHANGE and BECOME

Our previous formulation of CHANGE allows an object to
change from being red to being small. This prompted a
detour to develop a theory of scales. Now let us reconsider
CHANGE, using scales to solve the original problem.

A CHANGE event can only occur when the “from” and
“to” predicates involved are related by a common scale. The
previous definition can be extended with the additional
requirement that the two predicates exist on the same scale:
∀ o, Vp1, Vp2, t, e. (CHANGE(o@t, Vp1, Vp2, e)
 ≡ ∃ t1, t2, sc. (t1:t:t2 ∧ SCALEPRED(sc, Vp1) ∧ SCALEPRED(sc, Vp2)
 ∧ TRUEOF(o@t1, Vp1 \ Vp2) ∧ TRUEOF(o@t2, Vp2)))
With this definition, it is not permissible to change from
being red to being small, because there is no natural scale
with both Red and Small as its scale value predicates. But
CHANGE(light1@t, Red, Green, e1) is permissible since both
Red and Green reside on the COLOR scale.

Now consider defining BECOME, as in the example “The
light becomes green”, which can be formulated as
 BECOME(light1@t, Green, e1),
where SCALEVALPRED(COLOR, Green, ɸ).
In this example, the object may have any value immediately
before the BECOME event as long as that value maps to a

scale value predicate on the same scale as the one Green
belongs to (in this case the scale COLOR) and is different
from Green. After the BECOME event the object is Green. In
other words,
BECOME(light1@t, Green, e1)
 ≡ ∃t1, t2. (t1:t:t2 ∧ TRUEOF(light1@t2, GreenCOLOR) ∧

TRUEOF2(light1@t1, light1@t2, ¬ScaleEqual(COLOR)))
This suggests the following formulation of BECOME:
∀o,Vp,t,e ∃sc. (BECOME(o@t, Vpsc, e) ∧ SCALEPRED(sc, Vpsc)
 ≡ ∃t1, t2. (t1:t:t2 ∧ TRUEOF(o@t2, Vpsc)
 ∧ TRUEOF2(o@t1, o@t2, ¬ScaleEqual(sc))))
So far, so good. But this formulation does not handle cases
involving binary predicates, as in become different. To
capture an intuitive sense of different, we appeal to the
formulation of scales again. We say that two objects x and y
are different if there is some scale on which the objects have
different values. We do this because it seems incoherent to
say o1 is different from o2 because o1 weighs 5 pounds and
o2 is green. Rather, the two objects must have different
properties on a common scale, i.e.,
∀ o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, Different)
 ≡ ∃ sc. TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc)))
We introduce a new formal predicate that indicates the arity
of scale predicates. Different has arity 2:
 ARITY(Different, 2)
With this in hand we have an axiom for BECOME with binary
predicates:
∀o, P, t, e. (BECOME(o@t, P, e) ∧ ARITY(P, 2)
 ≡ ∃t1, t2. (t1:t:t2 ∧ TRUEOF2(o@t1, o@t2, P)))
Note that this axiom would also apply to comparative
adjectives, such as become greener, for all comparative
predicates are binary predicates.

Automatically Deriving the Meaning of Change
Our final hand-built definitions are summarized in Table 2.
We now have developed all the formalism needed to prove
that the full meaning of change can be derived from its
definition: become different. We have the following
equivalence theorem.
Theorem 3 (CHANGE ≡ BECOME Different)
∀ o, t. (∃ Vp1, Vp2, e1. CHANGE(o@t, Vp1, Vp2, e1)
 ≡ ∃ e2. BECOME(o@t, Different, e2))

Thus, for every CHANGE event, there is a corresponding
BECOME Different event, and vice versa.

In this case, we showed that we can derive the definition of
CHANGE automatically from its natural language definition by
composing BECOME and Different. However, this will not
always be the case. The composite definition will often
overlap the hand-crafted definition considerably, but will not
be quite equivalent. Natural language definitions are
typically underspecified and vague, emphasizing the
necessary but not the sufficient conditions. Even though we
may not always obtain equivalence, we have shown that this
is a promising approach for learning key properties of the
commonsense meanings of words by reading and composing
natural language definitions automatically.

Conclusion
We have presented the first steps in developing a framework
for formalizing commonsense knowledge, especially about
verbs and adjectives. Unlike the work of Hobbs and
colleagues, we have been strongly motivated by the need to
have a formalism that parallels linguistic structures and thus
allows commonsense knowledge to be derived automatically
by reading definitions. This requirement entailed some
strong constraints on the logical framework in which
knowledge is expressed and led us to particular
formalizations of certain underlying conceptualizations such
as scales that are essential elements of the commonsense
notions of change and being different. While we only
addressed the formalization of a small number of concepts
here, we already have laid a key piece of groundwork for
automatically creating knowledge by reading—as the
concepts of change and become are fundamental to a large
number of verbs in English. With such a machinery, we
endeavor to keep the number of concepts that need to be
hand-axiomatized to a minimum, while learning the rest by
composing definitions automatically.

Preliminary work on automatically building a knowledge
base is described in (Allen et al., 2013). We show there that
we can derive knowledge capturing event hierarchies and
causal relations. The work here provides the underlying
temporal logic that will “activate” this knowledge,
suggesting the potential for automatically building large
scale commonsense knowledge bases that have broad
coverage of word senses (e.g., all of WordNet).

Proofs of the theorems are included in the longer version
of this paper, available online.

Sense Final Axiomatization
Change ∀ o, Vp1, Vp2, t, e. (CHANGE(o@t, Vp1, Vp2, e)

≡ ∃ t1, t2, sc. (t1:t:t2 . SCALEPRED(sc, Vp1) ∧ SCALEPRED(sc, Vp2) ∧ TRUEOF(o@t1, Vp1 \ Vp2) ∧ TRUEOF(o@t2, Vp2)))
Become (with a
unary predicate)

 ∀ o, Vp, t, e ∃ sc. (BECOME(o@t, Vpsc, e) ∧ SCALEPRED(sc, Vpsc)
≡ ∃ t1, t2. (t1:t:t2 ∧ TrueOf(o@t2, Vpsc) ∧ TrueOf2(o@t1, o@t2, ¬ScaleEqual(sc))))

Become (with a
binary relation)

 ∀ o, P, t, e . (BECOME(o@t, P, e) ∧ ARITY(P, 2)
≡ ∃ t1, t2. (t1:t:t2 ∧ TRUEOF2(o@t1, o@t2, P)))

Different ∀ o1, o2, t1, t2 . (TRUEOF2(o1@t1, o2@t2, Different)
≡ ∃ sc . TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc)))

Table 2: The Final Definitions

References
Allen, J. F. (1983) Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832-843.
Allen, J. F. (1984) Towards a general theory of action and time.
Artificial Intelligence, 23(2):123-154.
Allen, J. F. and Ferguson, G. (1994) Actions and events in
interval temporal logic. Journal of Logic and Computation, 4(5):
531-579.
Allen, J. F., de Beaumont, W., Galescu, L., Orfan, J., Swift, M.
and Teng, C. M. (2013) Automatically deriving event ontologies
for a commonsense knowledge base. In Proceedings of the
International Conference for Computational Semantics.
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R.,
Jr. and Mitchell, T. M. (2010) Toward an architecture for never-
ending language learning. In Proceedings of AAAI, 1306-1313,
AAAI Press.
Fellbaum, C. (1998, ed.) WordNet: An Electronic Lexical
Database. Cambridge, MA: MIT Press.
Hobbs, J. R. (2013) http://www.isi.edu/~hobbs/csk.html
Hamblin, C. L. (1972) Instants and intervals. In J. T. Fraser, F. C.
Haber, and G. H. Muller (ed), The Study of Time. Springer-Verlag,
New York.
Lenat, D. B. (1995) Cyc: A large-scale investment in knowledge
infrastructure. The Communications of the ACM, 38(11):33-38.
Niles, I. and Pease, A. (2001) Towards a standard upper
ontology. In Proc. 2nd International Conference on Formal
Ontology in Information Systems (FOIS-2001), Chris Welty and
Barry Smith, eds, Ogunquit, Maine.
Yates, A., Banko, M., Broadhead, M., Cafarella, M., Etzioni, O.
and Soderland, S. (2007) TextRunner: Open information
extraction from the web. In Proceedings of Human Language
Technologies: The Annual Conference of the North American
Chapter of the Association for Computational Linguistics
(NAACL-HLT).
Whitehead, A.N. (1929). Process and Reality, Macmillan, New
York.

