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Abstract
In constructing a system for learning commonsense 
knowledge by reading online resources for word definitions, 
a key challenge is to  develop a formalism rich and 
expressive enough to capture commonsense concepts 
expressed in natural  language. Derivations based on natural 
language impose strong requirements  on the nature of the 
representation.  Specifically, predicates  should correspond 
to  word senses and their argument structures in the 
language, and complex formulas should be constructed 
compositionally in  a way that parallels the structure of 
language. To provide a suitable representation framework 
we need to  extend interval  temporal logic in several ways, 
including organizing time around objects  rather than 
predicates, and developing a theory of scales. As a driving 
example, we analyze core meanings of the verbs change and 
become and the adjective different  and show, after 
appropriate development of our formalism, how the desired 
meaning of change can be derived from one of its 
definitions in WordNet: become different.

 Introduction and Motivation  
Many applications of Artificial Intelligence, and natural 
language processing in particular, are hindered by a lack of 
extensive commonsense knowledge bases. Vast amount of 
knowledge is needed to understand language, as well as to 
plan and reason about the world. Much of it is quite 
mundane: if you fall asleep you become asleep; you use 
keys to unlock doors; people don’t like pain. While it is 
everyday ordinary stuff,  such knowledge is critical if 
systems are to achieve human-levels of deep understanding 
of language.

While there have been some efforts to encode large 
amounts of commonsense knowledge by hand, e.g., Cyc 
(Lenat, 1995),  SUMO (Niles and Pease, 2001),  such efforts 
barely make a dent in accumulating the knowledge that is 
needed. Further, such efforts generally are expressed in 
formal notations using predicates motivated by mathematics 
rather than attempt to create a close link to the elements of 
natural language (e.g, word meanings, semantic roles).

Our goal is to create most of the commonsense 

knowledge base by reading.  While recent efforts such as 
NELL (Carlson et al.,  2010) and TextRunner (Yates et al., 
2007) have been effective at collecting vast amounts of 
knowledge about instances (e.g., Chicago is a city) and 
semantic patterns (e.g., people kill people), the 
commonsense knowledge we need is definitional in nature 
to enable necessary entailments: e.g., kill means cause to 
die; murder means kill intentionally; fall asleep means 
change from awake to asleep. We are working on building 
knowledge bases automatically by reading definitions (Allen 
et al., 2013), starting with the definitions in WordNet 
(Fellbaum, 1998). The goal of this paper is to describe the 
formalism we have developed in order to facilitate the 
construction of effective axioms directly from natural 
language definitions. This requirement puts strong 
constraints on the nature of the representation that we note 
here and will develop further in the paper.  

In many ways,  this paper has similar goals and 
motivations as those of Hobbs (2013). We both want to 
axiomatize core commonsense notions of events. Some of 
the differences are in the style of the formalism—we start 
from an explicit interval temporal logic and build from there, 
whereas Hobbs places eventualities as central and time plays 
a secondary role. But the most important difference is our 
emphasis on building a formalism that supports learning the 
knowledge by reading. Whereas Hobbs does a hand analysis 
of core verbs, such as cause and have, and identifies a few 
core meanings that he argues subsume all the WordNet 
senses, our goal is to axiomatize automatically most of the 
WordNet senses directly from their definitions. We would 
rather have a messy knowledge base that covers as much of 
the subtleties of language and word senses as possible, rather 
than developing a more minimal, but more abstract, theory. 

We base our formalism on the one developed in Allen &  
Ferguson (1994), henceforth AF, and Allen (1984), in which 
events are formalized in an interval temporal logic in a way 
that enables planning and reasoning. AF has reified events, 
with functional relations capturing semantic roles and 
arguments.  For example,  Jack lifted the ball (over interval t1) 
is represented as
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∃e.(LIFT(e)∧(agent(e)=jack1)∧(affected(e)=ball1)∧(time(e)=t1))
While this is the underlying logic,  as in AF, we usually 
abbreviate such expressions as LIFT(jack1, ball1, t1, e) when 
the specific roles are obvious. When using this abbreviation, 
predicates might appear to have a varying number of 
arguments,  but this is just because of the abbreviation 
convention and not a formal part of the logic.  The 
framework also builds from Allen’s interval logic of action 
and time (Allen 1983, 1984), where time periods can be 
related by Allen’s temporal relations. For this paper, we only 
need the meets relation, written t1:t2 and “during or equal”, 
written t1 ⊆ t2. A moment is an interval that has no true 
subintervals and captures minimally perceptible moments in 
time. Decomposable periods are often referred to as true 
intervals.  The predicate Moment allows us to distinguish 
moments from true intervals. We also add the strong 
constraint on our temporal models by asserting that all 
intervals are constructed out of moments.  This can be 
captured by the simple axiom that every interval contains a 
moment:

Discrete Time Axiom: ∀t. ∃ t’  ⊆ t. Moment(t’)

Representation and Linguistic Structure
The key driving constraint of this work is that the 
representational framework should closely parallel linguistic 
elements and structure.  We believe this is essential to enable 
learning conceptual knowledge by reading definitions. 
Specifically, we require an equivalence between predicates 
and functions in the knowledge base and word senses in the 
language. The word senses correspond 1-1 to the predicates 
and the arguments to these predicates correspond to the 
linguistic arguments that the word senses may take. This will 
allow us to introduce new predicates into the knowledge 
base in a systematic and straightforward way based on the 
words used.

The representation of events in AF satisfies this constraint  
for verbs—the event predicates correspond to verb senses, 
and the reified events allow the argument functions that 
correspond directly to a verb’s semantic roles. Beyond 
events though, we need some extensions. First, if we are to 
maintain the close link between linguistic structure and the 
representation, we need to reify predicates (e.g., adjective 
meanings) so that they may serve as arguments to other 
predicates.  To distinguish such predicates from the formal 
predicates in the logic we will call them property 
predicates (see Table 1). Intuitively, property predicates 
identify characteristics of the world that can be directly 
perceived in a moment of time (e.g.,  at the present moment). 
For instance, consider the sentence John’s mood changed 
from happy to sad. There are three arguments to the event 
predicate CHANGE: the object undergoing the change (John’s 
mood), the prior state (happy) and the resulting state (sad). 
By reifying property predicates, we can express this as: 

CHANGE(mood(john), Happy, Sad, t, e).
While this is a natural mapping of the sentence meaning, 
such statements cannot be made in classical first order logic 

because predicates, such as Happy,  cannot serve as 
arguments to other predicates. While there might be some 
technical tricks to try to avoid such a generalization of the 
formalism, we will soon see additional reasons for why the 
reified predicates are convenient for capturing commonsense 
knowledge, particularly when representing scales.

We need one more significant change from AF to allow us 
to stay true to the structures of language. Consider one 
definition of change in WordNet: Become different.  The 
meaning of this expression is that an object that changes 
becomes different from what it was before. We will spend 
some time defining exactly what this means, but for now just 
consider that the predicate Different needs to apply to the 
same object twice, but at different times.  One cannot express 
such a relation if we can only associate times with predicates 
or properties,  as in AF.  Rather, we need a more general logic 
where terms, rather than the predicates,  are temporally 
qualified. Specifically, we introduce a new function that 
takes the name of an object and a time and denotes that 
object over that time, e.g., x@t represents “object x over 
time t”.  We refer to these as temporally situated objects. 
Thus, John is Happy today is written as

 TRUEOF(john@today, Happy)
We need another predicate for binary relations. For example, 
we would express I am different today from yesterday as:

TRUEOF2(me@yesterday, me@today, Different)
Such a proposition cannot be directly expressed using a 
logic that only attaches time to the predicates. 

The notion that objects are temporally situated and 
properties are not is in stark contrast to standard temporal 
logics in which objects are atemporal and properties change 
over time. This view has been discussed in philosophy, 
going back to before Whitehead (1929). We introduce a 
predicate EXISTS that defines the temporal range of an 
object, i.e., when the temporally situated object o@t exists. 
For instance,  if I was born in 1983, then EXISTS(me@1984) 
and ~EXISTS(me@1982) both hold.   Properties only hold on 
temporally situated objects that exist:

Construct Formal Status Linguistic 
correlate

Notation and 
Example(s)

Notation and 
Example(s)

Formal 
Predicates

Predicates in the 
logic none Small 

caps TRUEOF

Event 
predicates

Predicates in the 
logic verb senses Small 

caps CHANGE

Property 
predicates

Terms that 
denote properties

nouns and 
adjective senses

Initial 
caps

Happy, 
Dog, ...

Property 
functions

Functions that 
apply to property 

predicates

comparatives, 
nominalizations

Start with 
underbar

_er, 
_ness, ...

Scales Terms that 
denote scales

Some nouns 
(e.g., size)

Small 
caps

SIZE

Objects
Terms that 

denote domain 
objects

proper names, 
noun phrases

Lower 
case

john,
x, 

father(x)
Table 1: Notation and Ontological Categories



∀t. (~Exists(o1@t1) ⊃ ∀P, o2, t2. (~TRUEOF(o1@t1, P) 
  ∧ ~TRUEOF2(o1@t1, o2@ t2, P) 
	
 	
 ∧ ~TRUEOF2(o2@ t2, o@t1, P)))

Property predicates are homogeneous, which means that if a 
property holds over some time period I, then it holds over all 
subintervals of I. We need to define this for both unary and 
binary predicates:
Homogeneity Axioms1

(H1) ∀o, P, t . (TRUEOF(o@t, P)  
  ≡ ∀t’ ⊆ t. TRUEOF(o@t’, P))
(H2) ∀o1, o2, P, t1, t2 . (TRUEOF2(o1@t1, o2@t2 , P)
  ≡ ∀t1’  ⊆ t1,  t2’  ⊆ t2 . TRUEOF2(o1@t1’, o2@t2’ , P))
Note that for binary relations, homogeneity applies to all 
possible pairs of subintervals associated with the objects. 
This is a very strong constraint but necessary because there 
is no constraint on how the time periods t1 and t2 relate to each 
other.

As a final observation, note that we have two types of 
negation, and we use the notation in AF. Weak negation, e.g, 
~TRUEOF(b@t, Clear), simply states that TRUEOF(b@t, 
Clear) does not hold —i.e., it is not the case that b is clear 
over the entire time interval t, although it might be true over 
a subpart of t. Strong negation, in contrast, uses a negation 
function on property predicates, which we write as 
TRUEOF(b@t,  ¬Clear). As in AF, we have an axiom 
defining strong negation:
∀o, P, t. (TRUEOF(o@t, ¬P) ≡ ∀t‘ ⊆ t. ~TRUEOF(o@t’, P))
Note that a direct corollary of this axiom is that strong 
negation and weak negation are equivalent for moments:
∀o, P, t.  (Moment(t) 
  ⊃ (TRUEOF(o@t, ¬P) ≡ ~TRUEOF(o@t, P)))
Also, we get that for any moment either P or ¬P holds. This 
can be extended to TRUEOF2 in the obvious way.

There is one more important constraint on the logic that 
we need that was captured in AF’s discrete variation axiom 
schema. This constraint prevents the possibility of properties 
changing truth values infinitely often within an interval. The 
philosophical underpinnings of this issue have been 
discussed in for example (Hamblin, 1972).
Discrete Variation Axiom
∀o, P, t. (~TRUEOF(o@t, P)  
 ≡ ∃ m ⊆ t.  (Moment(m) ∧ TRUEOF(o@m, ¬P)))
With this in hand, we can then prove some useful theorems 
about strong negation:
Negation Inverse Theorems
(N1) ∀o, P, t. (TRUEOF(o@t, ¬¬P) ≡ TRUEOF(o@t, P))
(N2) ∀o1, o2, P, t1, t2. (TRUEOF2(o1@t1, o2@t2 , ¬¬P)  
  ≡  TRUEOF2(o1@t1,  o2@t2,  P))

In the rest of the paper we will develop these ideas further 
by examining how we might define three related words: 
change, become and different. We chose these three because 
they are closely related in their definitions in WordNet. We 
can explore the adequacy of our formalism by examining 
how well their definitions capture the intuitive senses of the 
words. Specifically,  we examine a key definition of change 
in WordNet, namely become different. A basic desideratum 
of our formalism is that the definitions of become and 
different should combine compositionally to capture what it 
means to change.   If we can accomplish this, we will have 
some initial confidence that we have created a suitable 
groundwork for acquiring, on a large scale, commonsense 
knowledge by reading definitions automatically.

A First Attempt to Define Change
Intuitively we might define CHANGE and BECOME as follows. 
A CHANGE event e, involving an object o over time t,  from 
property P1 to property P2,  occurs when there are two time 
intervals t1 and t2, such that P1 is true of o immediately 
before t (over t1) and P2 is true of o immediately after t (over 
t2).  
∀o, P1, P2, t, e. (CHANGE(o@t, P1, P2, e) 
 ≡ ∃ t1,t2. (t1:t:t2 ∧ TRUEOF(o@t1,P1) ∧ TRUEOF(o@t2,P2)))
Similarly, a BECOME event e, involving an object o over time 
t, to property P, might be defined as follows:
∀o, P, t, e. (BECOME(o@t, P, e) 
 ≡ ∃t1,t2. (t1:t:t2 ∧ TRUEOF(o@t1,¬P) ∧ TRUEOF(o@t2,P)))
The two events are clearly related in some way. We would 
like whenever a CHANGE event obtains, a corresponding 
BECOME event obtains: CHANGE(o@t, P1, P2, e1) ⊃ ∃ e2. 

BECOME(o@t,  P2, e2), or roughly, whenever o changes from 
P1 to P2, we also have o becomes P2.  However, 
CHANGE(o@t, P1,  P2, e1) only gives us, with appropriate 
instantiations, TRUEOF(o@t2, P2) but not TRUEOF(o@t1, 
¬P2) as is needed by the BECOME event.  The two predicates 
P1 and P2 in CHANGE are currently not constrained by any 
relation.

Hobbs addresses this issue in his definition of CHANGE by 
requiring that P1 and P2 must be contradictory, but this 
constraint is too strong.  For example, it will not allow us to 
have a CHANGE event of an object changing from being 
small to being tiny.  After this change, we are tiny but at the 
same time we are still small.  To account for this subtlety, we 
introduce a predicate combination function, “P but not Q”, 
which might be realized in English as small but not tiny.  We 
write it as P\Q, where P and Q are property predicates, and 
define it as:
∀o, P, Q, t. (TRUEOF(o@t, P\Q) 
 ≡ TRUEOF(o@t, P) ∧ TRUEOF(o@t, ¬Q))
That is, P\Q is true of o whenever P but not Q is true of o.

1 Note that homogeneity only applies  to properties that can be true over a moment. Thus, an expression such as “grew more than 5 inches” 
cannot be captured with a property predicate as it can only be true over certain intervals. We do not have the space to discuss such 
predicates here, and they are not important to the content of this paper.



Now we can reformulate the CHANGE predicate:
∀o, P1, P2, t, e. (CHANGE(o@t, P1, P2, e) 
 ≡ ∃t1,t2.(t1:t:t2∧TRUEOF(o@t1,P1\P2)∧TRUEOF(o@t2,P2)))
Now we are able to express a change of an object from 
being small to being tiny: small but not tiny is true of the 
object before the change, while tiny is true of the object after 
the change.

One can verify that this formulation also applies to 
predicates that are inconsistent, as in CHANGE(light1@t, Red, 
Green, e1), and that with this definition,  CHANGE(o@t, P1, 
P2, e1) ⊃ ∃ e2. BECOME(o@t, P2, e2) holds.

We have skirted one of the most crucial aspects of 
CHANGE in our discussion so far.  The relationship between 
the pairs of predicates that can legitimately occupy the P1 
and P2 slots in a change event is still under-constrained.  The 
formulation above allows, for example, a change of an 
object from being red to being small.  While this might be 
acceptable from a logical point of view, it does not capture 
intuitions in language about change.  To tackle this problem 
we need to develop a theory of predicate relatedness, which 
is closely associated with the notion of scales, discussed 
next.

 A Theory of Scales
There are three common types of scales, classified according 
to the kind of relation between the elements on the scale: 
interval (e.g.  temperature as Celsius degrees), ordinal (e.g. 
edibility as {raw, ripe, rotten}) and the degenerate abstract 
scale in which no relations need exist between the values on 
the scale (e.g. occupations as {Farmer, Chef, ...}).

A scale consists of a partially ordered set of values with 
an associated function from objects over time intervals to 
sets of values on the scale,  and predicates corresponding to 
sets of values on the scale.  Typically, names of scales (and 
scale functions) stem from nouns and scale value predicates 
stem from adjectives in natural language. For example, 
height(o@t) maps a temporally situated object to the set of 
values on the HEIGHT scale that the object takes over period 
t.  A predicate such as Tall, corresponding to an adjective of 
the same name, is true of objects whose height values over t 
is in the upper range of the HEIGHT scale. We will define 
scale value predicates more formally shortly.

In this example, the values in HEIGHT are fully ordered (it 
is an interval scale), and the predicates Tall and Short are 
captured by convex subsets of HEIGHT values.  In general,  
however, the scale values need not be fully ordered, and the 
scale predicates need not be convex (e.g. the predicate 
denoting “not of medium height”, which corresponds to “tall 
or short”). Note that an object o may take different values on 
a scale sc over a given time interval t.   Thus, sc(o@t) is a set 
of values.  For the special case of moments, sc(o@m) is a 
singleton for any moment m.  The following relates the two:
∀sc, o, t. (sc(o@t) = ∪ sc(o@m): m ⊆ t ∧ Moment(m))
If sc is not applicable to o@t, then sc(o@t) is empty, for 
example, mood(rock1@t) = ∅.

 We extend the ordering relation over values on a scale to 
subsets of values on a scale: Subset S1 is less than subset S2 
iff every value in S1 is less than every value in S2.  

We can then define predicates for comparing temporally 
situated objects.  Defining equality on a scale is more 
complex than one might think.  We cannot use simple 
equality over the scale value sets (that is, have an axiom 
TRUEOF2(o1@t1, o2@t2, ScaleEqual(sc)) ≡ (sc(o1@t1) = 
sc(o2@t2)) (*)) as there might be subintervals where they 
were not equal.  For example, my car accelerates from 0 to 
60 mph while your car decelerates from 60 to 0 mph.  Our 
speeds take on the same set of values over the entire 
mentioned time interval(s), but our speeds over any 
subintervals are rarely equal.  Thus (*) violates the 
homogeneity requirement.  We therefore adopt the following 
stronger definition of ScaleEqual with explicit mention of the 
subintervals.
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ScaleEqual(sc)) 
 ≡  ∀t1’  ⊆ t1, t2’  ⊆ t2.  (sc(o1@t1’ ) = sc(o2@t2’)))
This consideration does not apply to the less-than comparison 
between two temporally situated objects, but we include the 
subinterval specification for uniformity:
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ScaleLessThan(sc)) 
 ≡  ∀t1’  ⊆ t1, t2’  ⊆ t2.  (sc(o1@t1’ ) < sc(o2@t2’)))
As a consequence , i f TRUEOF2(o1@t1, o2@t2, 
ScaleEqual(sc)),  then both sc(o1@t1) and sc(o2@t2) map to an 
identical singleton, since some subintervals are moments.  If 
TRUEOF2(o1@t1, o2@t2, ScaleLessThan(sc)),  then sc(o1@t1) 
and sc(o2@ t2) are disjoint.

Now, let us explore some of the nuances of these 
definitions in a few examples.
Example 1  Growing up I was always the same height as my 
sister at the same age (so I got all her hand-me-down 
clothes).
∀t1, t2. (TRUEOF2(me@t1, sister@t2, ScaleEqual(AGE))  
 ⊃ TRUEOF2(me@t1, sister@t2, ScaleEqual(HEIGHT)))
Here, I at age 3 was as tall as my sister at age 3; I at age 4 
was as tall as my sister at age 4; etc. 
Example 2  I have always been the same height as my sister 
(so she can’t put things up on the shelves I can’t reach... and 
neither can I).
∀t. (Moment(t) ∧ Exists(me@t) ∧ Exists(sister@t)  
 ⊃ TRUEOF2(me@t, sister@t, ScaleEqual(HEIGHT))) 
Here, I was as tall as my sister on March 25, 1992; on 
December 31, 1999; etc.  It is not the case that 
TRUEOF2(me@t, sister@t, ScaleEqual(HEIGHT)) for arbitrary 
time intervals t, since this assertion is only true if my height 
and my sister’s height are identical and constant over the 
entire t.  We thus need to circumscribe the length of the time 
interval under consideration: moments are suitable as our 
heights cannot change within a moment.   These moments 
should further be constrained to be drawn from only when 
both my sister and I are in existence so that it makes sense to 
talk about our heights.
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We will make use of the following lemma in a later 
section. It states that if two temporally situated objects are 
not equal on a scale, then they have disjoint values on that 
scale.
Lemma 1 (¬ScaleEqual)  
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc)) 
 ⊃ (sc(o1@t1) ∩ sc(o2@t2) = ∅))

Scale Value Predicates
As discussed earlier scale value predicates typically 
correspond to adjectives in natural language and they denote 
(often but not necessarily convex) subsets of values on the 
scale.  They have additional properties with respect to their 
scales.  We use 

 SCALEVALPRED(sc, Vp, +/-/ɸ)
to denote that the predicate Vp is a predicate with a positive 
(+), negative (-) or neutral (ɸ) orientation on scale sc.  (The 
function of the orientation +/-/ɸ are needed for handling 
comparatives and superlatives, but we have no room to 
discuss these here in this paper.) Two examples are 
S C A L E V A L P R E D ( T E M P E R A T U R E , C o l d , - ) a n d 
SCALEVALPRED(MOOD,  Happy, +).  As a convenient 
abbreviation, we define 
  SCALEPRED(sc, Vp) ≡ ∃ x. SCALEVALPRED(sc, Vp, x)
when the orientation of the scale value predicate is not 
important. Note also that most adjectives are ambiguous as 
to which scales they refer to. We differentiate them by 
adding the scale they refer to as a subscript. For example, the 
adjective deep has at least three senses, captured by three 
p r e d i c a t e s : S C A L E P R E D ( D E P T H , D e e p D E P T H ) , 
S C A L E P R E D ( P R O F U N D I T Y , D e e p P R O F U N D I T Y ) a n d 
SCALEPRED(INTENSITY, DeepINTENSITY). We will sometimes 
omit the subscript to Vpsc when the associated scale sc is 
clear from the context. Otherwise if scale value predicates 
are used without the subscript,  then they remain ambiguous 
between all their senses. In other words,
∀o, t, Vp. (TRUEOF(o@t, Vp) ∧ ∃ sc. SCALEPRED(sc, Vp)
 ≡ ∃ sc’. (SCALEPRED(sc’, Vp) ∧ TRUEOF(o@t, Vpsc’  )))
An object may have more than one scale value predicate 
holding on a scale.  For example, an object may be both 
small and tiny at the same time.. We may also have 
composite scale value predicates, for example, 
TRUEOF(o@t,  SmallSIZE \ TinySIZE) would indicate that an 
object is small but not tiny.   In general, we may define a 
scale value predicate for any “intuitive” subset of values on 
a scale.

Let us define a function for the scale values corresponding 
to a scale value predicate:
∀sc, Vp. (scaleVal(sc, Vp) 
  ∪ sc(o@t): TRUEOF(o@t, Vp) if SCALEPRED(sc, Vp))
  ∅                                                               otherwise)
Note in this definition, if Vp is not on the scale sc, then 
scaleVal(sc, Vp) = ∅.  We then have the following:

∀sc, Vp, o, t. (SCALEPRED(sc, Vp) ∧ sc(o@t) =∅
 ⊃ (TRUEOF(o@t, Vp) ≡ sc(o@t) ⊆ scaleVal(sc, Vp))) 
and we can show
∀sc, Vp, o, t. (SCALEPRED(sc, Vp)
 ⊃ (TRUEOF(o@t, ¬Vp) ≡ sc(o@t) ∩ scaleVal(sc, Vp) =∅))
If Vp is a scale value predicate on scale sc,  that is, 
SCALEVALPRED(sc, Vp, +/-/ɸ), so is ¬Vp but with reverse 
orientation: SCALEVALPRED(sc, ¬Vp, -/+/ɸ).   Also if Vp1 and 
Vp2 are scale value predicates on a scale sc, so is Vp1 \ Vp2 
with the same orientation as Vp1.

Note that Lemma 1 can be stated in terms of scale value 
predicates.
Corollary 2 (¬ScaleEqual)
∀sc, o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc))
 ⊃ ∃Vp. (SCALEPRED(sc, Vp) ∧ TRUEOF(o1@t1, Vp) 
  ∧ TRUEOF(o2@t2, ¬Vp)))
Besides expressing scale values as adjectives, natural 
language also describes quantitive scale values in terms of 
units and quantities.   We will not go into details here,  but to 
accommodate different unit systems on the same scale, 
especially for interval scales, we introduce a mechanism to 
produce scale value predicates by composing units and 
quantities, written as <unit, quantity>.  For example, “an 
object o is worth 10 dollars at time t” can be expressed by 
TRUEOF(o@t, <dollar, 10>WORTH).  With arithmetic 
operations we can define conversion rates between different 
units, for example,
∀o, t, x. (TRUEOF(o@t, <inch, x>LENGTH) 
  ≡ TRUEOF(o@t, <cm, 2.54x>LENGTH)).

Using Scales: Revisiting CHANGE and BECOME

Our previous formulation of CHANGE allows an object to 
change from being red to being small.   This prompted a 
detour to develop a theory of scales.  Now let us reconsider 
CHANGE, using scales to solve the original problem.

A CHANGE event can only occur when the “from” and 
“to” predicates involved are related by a common scale.  The 
previous definition can be extended with the additional 
requirement that the two predicates exist on the same scale:
∀ o, Vp1, Vp2, t, e. (CHANGE(o@t, Vp1, Vp2, e) 
 ≡ ∃ t1, t2, sc. (t1:t:t2 ∧ SCALEPRED(sc, Vp1) ∧ SCALEPRED(sc, Vp2) 
  ∧ TRUEOF(o@t1, Vp1 \ Vp2) ∧ TRUEOF(o@t2, Vp2)))
With this definition, it is not permissible to change from 
being red to being small, because there is no natural scale 
with both Red and Small as its scale value predicates. But 
CHANGE(light1@t, Red, Green, e1) is permissible since both 
Red and Green reside on the COLOR scale.

Now consider defining BECOME, as in the example “The 
light becomes green”, which can be formulated as
 BECOME(light1@t, Green, e1), 
where SCALEVALPRED(COLOR, Green, ɸ).  
In this example, the object may have any value immediately 
before the BECOME event as long as that value maps to a 



scale value predicate on the same scale as the one Green 
belongs to (in this case the scale COLOR) and is different 
from Green.  After the BECOME event the object is Green.   In 
other words, 
BECOME(light1@t, Green, e1) 
 ≡  ∃t1, t2.  (t1:t:t2 ∧ TRUEOF(light1@t2, GreenCOLOR)  ∧   

TRUEOF2(light1@t1, light1@t2, ¬ScaleEqual(COLOR)))
This suggests the following formulation of BECOME:
∀o,Vp,t,e  ∃sc. (BECOME(o@t, Vpsc, e) ∧ SCALEPRED(sc, Vpsc)
 ≡ ∃t1, t2. (t1:t:t2 ∧ TRUEOF(o@t2, Vpsc) 
   ∧ TRUEOF2(o@t1, o@t2, ¬ScaleEqual(sc)))) 
So far, so good. But this formulation does not handle cases 
involving binary predicates, as in become different. To 
capture an intuitive sense of different,  we appeal to the 
formulation of scales again. We say that two objects x and y 
are different if there is some scale on which the objects have 
different values. We do this because it seems incoherent to 
say o1 is different from o2 because o1 weighs 5 pounds and 
o2 is green.  Rather, the two objects must have different 
properties on a common scale, i.e.,
∀ o1, o2, t1, t2. (TRUEOF2(o1@t1, o2@t2, Different) 
 ≡  ∃ sc. TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc)))
We introduce a new formal predicate that indicates the arity 
of scale predicates.  Different has arity 2:
 ARITY(Different, 2)
With this in hand we have an axiom for BECOME with binary 
predicates:
∀o, P, t, e. (BECOME(o@t, P, e) ∧ ARITY(P, 2) 
 ≡ ∃t1, t2. (t1:t:t2 ∧ TRUEOF2(o@t1, o@t2, P)))
Note that this axiom would also apply to comparative 
adjectives, such as become greener, for all comparative 
predicates are binary predicates.

Automatically Deriving the Meaning of Change
Our final hand-built definitions are summarized in Table 2.  
We now have developed all the formalism needed to prove 
that the full meaning of change can be derived from its 
definition: become different. We have the following 
equivalence theorem.
Theorem 3 (CHANGE ≡ BECOME Different)
∀ o, t. (∃ Vp1, Vp2, e1.  CHANGE(o@t, Vp1, Vp2, e1) 
 ≡ ∃ e2. BECOME(o@t, Different, e2))

Thus, for every CHANGE event, there is a corresponding 
BECOME Different event, and vice versa.

In this case, we showed that we can derive the definition of 
CHANGE automatically from its natural language definition by 
composing BECOME and Different.  However, this will not 
always be the case. The composite definition will often 
overlap the hand-crafted definition considerably, but will not 
be quite equivalent. Natural language definitions are 
typically underspecified and vague, emphasizing the 
necessary but not the sufficient conditions. Even though we 
may not always obtain equivalence,  we have shown that this 
is a promising approach for learning key properties of the 
commonsense meanings of words by reading and composing 
natural language definitions automatically.

Conclusion
We have presented the first steps in developing a framework 
for formalizing commonsense knowledge, especially about 
verbs and adjectives. Unlike the work of Hobbs and 
colleagues, we have been strongly motivated by the need to 
have a formalism that parallels linguistic structures and thus 
allows commonsense knowledge to be derived automatically 
by reading definitions. This requirement entailed some 
strong constraints on the logical framework in which 
knowledge is expressed and led us to particular 
formalizations of certain underlying conceptualizations such 
as scales that are essential elements of the commonsense 
notions of change and being different. While we only 
addressed the formalization of a small number of concepts 
here, we already have laid a key piece of groundwork for 
automatically creating knowledge by reading—as the 
concepts of change and become are fundamental to a large 
number of verbs in English.  With such a machinery, we 
endeavor to keep the number of concepts that need to be 
hand-axiomatized to a minimum, while learning the rest by 
composing definitions automatically.

Preliminary work on automatically building a knowledge 
base is described in (Allen et al.,  2013). We show there that 
we can derive knowledge capturing event hierarchies and 
causal relations. The work here provides the underlying 
temporal logic that will “activate” this knowledge, 
suggesting the potential for automatically building large 
scale commonsense knowledge bases that have broad 
coverage of word senses (e.g., all of WordNet). 

Proofs of the theorems are included in the longer version 
of this paper, available online.

Sense Final Axiomatization
Change  ∀ o, Vp1, Vp2, t, e. (CHANGE(o@t, Vp1, Vp2, e)  

≡ ∃ t1, t2, sc.  (t1:t:t2 . SCALEPRED(sc, Vp1) ∧ SCALEPRED(sc, Vp2) ∧ TRUEOF(o@t1, Vp1 \ Vp2) ∧ TRUEOF(o@t2, Vp2)))
Become (with a 
unary predicate)

 ∀ o, Vp, t, e  ∃ sc. (BECOME(o@t, Vpsc, e) ∧ SCALEPRED(sc, Vpsc)
≡ ∃ t1, t2. (t1:t:t2 ∧ TrueOf(o@t2, Vpsc) ∧ TrueOf2(o@t1, o@t2, ¬ScaleEqual(sc))))

Become (with a 
binary relation)

 ∀ o, P, t, e . (BECOME(o@t, P, e) ∧ ARITY(P, 2)
≡ ∃ t1, t2. (t1:t:t2 ∧ TRUEOF2(o@t1, o@t2, P)))

Different  ∀ o1, o2, t1, t2 . (TRUEOF2(o1@t1, o2@t2, Different) 
≡ ∃ sc . TRUEOF2(o1@t1, o2@t2, ¬ScaleEqual(sc)))

Table 2: The Final Definitions
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