
An investigation of actions, change, space within a hole-loop dichotomy

Paulo E. Santos
Elect. Eng. Dep.

FEI, São Paulo, Brazil.
E-mail: psantos@fei.edu.br

Pedro Cabalar
Department of Computer Science,

University of Corunna, Spain.
E-mail: cabalar@udc.es

Abstract

This work investigates the spatial knowledge of a domain
composed of non-trivial objects such as strings and holed ob-
jects. To this aim, we consider the formalisation of puzzle-
like examples as the starting point for the development of
Knowledge Representation systems. The present paper con-
centrates on the representation of “loops” (or loop-like re-
gions) that can be formed by a flexible string, and that may
play an essential part in the solution of physical problems in-
volving strings.

Introduction
Understanding the reasoning processes involved in spa-
tial knowledge is one of the key issues in the investiga-
tion of cognition, as space not only shapes our actions in
the commonsense world, but also serves as the scenario
in which our everyday experiences take place. Research
inQualitative Spatial Reasoning (QSR) (Ligozat 2011) at-
tempts the logical formalisation of spatial knowledge based
on primitive relations defined over elementary spatial en-
tities. For instance, QSR theories include a mereotopolog-
ical theory based on the connectivity between spatial re-
gions (Randell, Cui, and Cohn 1992), the definition of
occlusion and parallax (Randell, Witkowski, and Shana-
han 2001; Randell and Witkowski 2002), spatial vagueness
(Cohn et al. 1997; Guesgen 2002a), the abductive assim-
ilation of sensor data (Santos and Shanahan 2002; 2003;
Santos 2007),as well as the definition of qualitative theories
about distance(Hernández, Clementini, and di Felice 1995;
Guesgen 2002b), boundaries (Meathrel and Galton 2001),
shapes (Schlieder 1996; Clementini and Felice 1997) and so
forth (Cohn and Hazarika 2001). An interesting and, per-
haps, less studied family of QSR problems has to do with
domains composed of non-trivial objects such as strings and
holed objects. In a series of papers (Cabalar and Santos
2006; 2011; Santos and Cabalar 2008) we have previously
introduced the formalisation of puzzle-like examples involv-
ing holes and strings. The use of puzzles as starting point
for the development of Knowledge Representation (KR) ap-
proaches usually has the advantage of offering a simple sce-
nario with a small number of objects while keeping enough
complexity for a KR challenging problem. In our previous
work, however, several important limitations were consid-
ered to focus on a family of puzzles with common features.

Among them, we disregarded the representation of knots,
the formation of string loops, and we omitted the intermedi-
ate steps where a holed object was crossing another hole.

This paper is a first step towards removing the last two
restrictions. We outline and identify the main representa-
tional problems derived from the introduction of loops in
a flexible string and we consider the representation of states
where holed objects (or loops) are crossing other holes. We
sketch some possible formal solutions whose complete de-
velopment is still under study.

Problems with previous formalisations
Previous work (Cabalar and Santos 2006; 2011; Santos and
Cabalar 2008) has concentrated on the formalisation and
automated solution of a family of puzzles whose goal is
to release a ring from an entanglement of objects, includ-
ing one or several strings, and (possibly holed) rigid ob-
jects, maintaining the objects’ physical integrity. The main
representative of this family of puzzles is probably the so-
called Fisherman’s Folly (shown in Figure 1). The elements
of this puzzle are a holed post (Post) fixed to a wooden
base (Base), a string (Str), a ring (Ring), a pair of spheres
(Sphere1, Sphere2) and a pair of disks (Disk1, Disk2).
The spheres can be moved along the string, whereas the
disks are fixed at each string endpoint. The string passes
through the post’s hole in a way that one sphere and one
disk remain on each side of the post. The spheres are larger
than the post’s hole, therefore the string cannot be separated
from the post without cutting either the post, or the string,
or destroying one of the spheres. The disks and the ring, in
contrast, can pass through the post’s hole.

(a) Initial (b) Goal: the ring must be free

Figure 1: A spatial puzzle: the Fisherman’s Folly.

In the initial state (shown in Figure 1(a)) the post is in
the middle of the ring, which in its turn is supported on the
post’s base. The goal of this puzzle is to find a sequence of
(non-destructive) transformations that, when applied on the
domain objects, frees the ring from the other objects, regard-
less their final configuration. Figure 1(b) shows one possible
goal state. As we would do in natural language, saying that
“the string passes through the sphere” (hole) or that “the
post passes through the ring” (hole), we will simply iden-
tify holes with their host objects (if an object hosted several
holes, a more elaborated notation would be required).

A simple planning system capable of finding a solu-
tion to the Fisherman’s Folly puzzle was presented in (Ca-
balar and Santos 2006), where the states of the puzzle were
represented as lists containing the sections of a long ob-
ject between hole crossings. Based on the hole ontology
from (Casati and Varzi 1999), in (Santos and Cabalar 2008),
a mereotopological representation of the domain objects was
presented. The work in (Cabalar and Santos 2011) developed
a representation of the puzzle actions in a Situation Calcu-
lus (McCarthy and Hayes 1969) framework developed in
Quantified Equilibrium Logic (Pearce and Valverde 2008),
where we were interested in a solution that was tolerant to
elaborations.

As said before, in the previous formalisations there were
several possible states that were disregarded, since they were
irrelevant for the puzzle solution. One of them is the for-
mation of knots and multi-knots, which we keep aside for
a future study, but the other two, the formation of string
loops and the possibility of holes crossing other holes are
in fact relevant for other similar puzzles that could not be
captured before. These two features are respectively shown
in Figures 2(a) and 2(b). (Cabalar and Santos 2011), for in-
stance, assumed that, when pulling from a string that was
crossing a hole, it was always done until loops were undone.
Similarly, when a holed-object crossed another hole, it was
always done in a complete way, disregarding intermediate
states like Figure 2(b).

String loop

(a) A string loop. (b) Hole crossing an-
other hole.

Figure 2: Two situations not formalised in (Cabalar and San-
tos 2011).

These limitations may easily suppose a lack of elabora-
tion tolerance, even without considering new puzzles. For
instance, the variation of Fisherman’s Folly shown in Fig-
ure 3 can be also found in shops and toy stores. It is es-

sentially the same puzzle with the difference that the holed
post has been replaced by a long metallic arc. However, this
is basically the same configuration as before, satisfying the
same restrictions (i.e., spheres cannot cross through it, but
wooden disks can). In particular, in this variation, the hole
formed by the long arc must be crossing the ring hole in the
initial state, and there is no way to evade from that.

Figure 3: A variation of Fisherman’s Folly.

In the Fisherman’s Folly, we know at least that an equiv-
alent instance of the puzzle can be solved without deal-
ing with these situations, but in other puzzles, the solution
mandatorily requires dealing with these features. One of
these puzzles, called the “easy-does-it,” constitutes our new
motivating example and is shown in Figure 4.

Figure 4: Easy does it

Spatial puzzles as chains
As a starting point, we will consider the simple formalisation
presented in (Cabalar and Santos 2006) for representing the
Fisherman’s Folly and analogous puzzles, extending it after-
wards to cope with the new features. The main idea of that
formalisation relies on a list structure chain(S) capturing
the sequence of hole crossings that each string S traverses
from one of its tips to the other. To handle this, objects into
three sorts: holes (in the example, this includes the post hole,
the ring hole and the holes through the spheres), long objects
(including the string and the post), and regular objects (in-
cluding all the remaining objects). For each hole h, its faces
are distinguished: h− and h+; and for each long object l its
tips l− and l+ are defined.

For helping the reader to figure out a puzzle state, we use
schematic representations like the one in Figure 5, which
shows the initial state of Fisherman’s Folly. Arrows corre-
spond to segments of long objects, defined between pairs of
hole crossings, or between a hole crossing and a tip. These
arrows point in the direction from tip l− to tip l+ of a same
long object l. Ellipses represent holes and boxes are linked
regular objects. The positive face of a hole is determined by
a right thumb rule from the small arrow in the ellipse (simi-
lar to a spin direction). Notice how a hole could also be seen
as a long object closed to itself joining its two tips.

Although not essential for the chain-based representa-
tion, it is also helpful to identify the segments of a long ob-
ject. When required, we will represent them using the nota-
tion x : i where x is a long object and i a segment label.

Sphere1 Sphere2

PostH

Disk2Disk1

Base

Ring

Str:0 Str:1 Str:2 Str:3

Post:1

Post:0

Figure 5: Schematic representation of the initial state.

As said before, given a long object x, the struc-
ture chain(x) represents the sequence of all hole cross-
ings when traversing x from its negative tip to its pos-
itive one. For instance, the state shown in Figure 5 is
represented by the following two chains: chain(P) =
[Ring+] (for the post - P object) and chain(Str) =
[Sphere1+, PostH+, Sphere2+] (for the string - Str ob-
ject). The former represents that the long object Post (P)
crosses the ring hole and the latter states that the string
crosses the hole on the sphere 1, the post hole and the hole on
the sphere 2, respectively. Note that, for brevity, only the out-
going hole faces are shown, following the direction negative
to positive tip. We will sometimes add a second argument
to the fluent chain indicating the state related to the chain
description; e.g. chain(x, Si) is a predicate representing the
chain of crossings for long object x at state Si.

In (Cabalar and Santos 2006) it sufficed with defining a
single action to represent the relevant movements of puzzle
objects, This action, denoted pass(B, hi), represents the op-
eration of passing a bundle of objects b towards the i face of
a hole h (i ∈ {+,−}). The effects of pass either add or
delete hole crossings from the chain on which it is applied.
In the case of Fisherman’s Folly, for instance, the sequence
of actions forming a solution corresponded to:

1. pass({Str+, Disk2}, PostH−),
2. pass({Post+, PostH}, Ring−),
3. pass({Sphere2}, Ring−),

4. pass({Ring}, PostH+) and
5. pass({Sphere2}, Ring+),
being the resulting sequence of states shown on Figure 6 –
see (Cabalar and Santos 2011) for a graphical representation.
Note that state 5 has actually reached the goal since, at this
point, the ring hole Ring does not occur in any list, i.e., it is
not crossed by any long object.

state chain(P) chain(Str)
S0 [Ring+] [Sphere1+, PostH+, Sphere2+]
s1 [Ring+] [Sphere1+, PostH+, Sphere2+, PostH−]
s2 [] [Sphere1+, Ring−, PostH+, Ring+,

Ring−, Sphere2+, Ring+, PostH−]
s3 [] [Sphere1+, Ring−, PostH+, Sphere2+,

PostH−, Ring+]
s4 [] [Sphere1+, PostH+, Ring−, Sphere2+,

Ring+, PostH−]
s5 [] [Sphere1+, PostH+, Sphere2+, PostH−]

Figure 6: A formal solution for the Fisherman’s puzzle and
its graphical representation.

Let us see now which new elaborations are required to
formalise the solution steps of the Easy-does-it puzzle at a
similar level of abstraction1.

Solving the Easy-does-it puzzle

B

S

R1

R2

R3

Str2

Str1

P

OutL2

l(Str2,1)

l(Str2,0)

OutL1

Figure 7: Diagram

Figure 7 shows a possible initial state of the Easy-does-
it-puzzle using a diagram as those introduced in the pre-
vious section. As a main important novelty, we can see
how loops in the string form a new kind of “holes” that
are represented with two faces + and -, as done previously
for holes in rigid objects (Cabalar and Santos 2006; 2011;
Santos and Cabalar 2008). The only distinction here is that
loops can appear and disappear and that their sizes may
change along time. We will denote loops on a particular

1We are also exploring the possibility of directly using Reide-
meiter’s moves from knot-theory, as they provide a more funda-
mental and fine-grained description of the movements. However,
the result involves many more steps and a considerably higher
search space for planning.

string with the expression l(s, n), where s is a string and
n represents the ordinal (beginning with 0) of the first seg-
ment of s involved in the loop, scanning the string from its
negative to its positive tips (note that many loops can be
done/undone on a single string). For now we are not tak-
ing into account the origin of loops, only that they define an
empty space (bounded by a string) through which an object
can pass.

The Easy-does-it domain is composed of three rings: two
at the tips of a string, and crossed by the post (denoted by R1

and R2) and a third ring (R3), which we call main ring (since
this is the one that should be released from the system of ob-
jects). R1 and R2 are “locked in” the post, since they cannot
pass through the sphere (S) fixed at the post’s tip. The do-
main also has two strings Str1 and Str2 that are entangled
with each other, a post P , a base B and six holes: the main
ring hole (R3), the holes on the two rings attached to string 1
(R1 and R2), the hole (loop) made by string 1 (Str1). In the
initial state (Figure 7) string 2 (Str2) makes two loops, that
are separated by R3. The loop at the tip of Str2 (whose area
is dot-filled) will be denoted by l(Str2, 1) and the one con-
nected to the base (B) (shadowed in gray) will be denoted by
l(Str2, 2). The reason for this notation shall become clear in
the next section. Str1 also forms a loop (filled with diagonal
lines) that involves R1, R2 and the post P too. This loop,
called OutL1, is somehow different to loops in Str2 since
it is closed by objects that are external to Str1 and its cross-
ings (the post has no direct interaction to Str1). These loops
will be called outer, as opposed to those using l(·, ·) nota-
tion that will be called inner. In the example, we can find
a second outer loop OutL2 (in this case, irrelevant for the
solution) formed by the set of objects Str1, Str2, B, R2 and
P . To sum up, the chains of crossings at the initial state S0

depicted in Figure 7 is:

chain(P, S0) = [B,R+
2 , R

+
1 , S] (1)

chain(Str1, S0) = [R2, l(Str2, 1)
+, R1] (2)

chain(Str2, S0) = [B,R−
3 , OutL+

1 , R
+
3 , B] (3)

Detecting inner loops
Chains of crossings reveal the set of loops formed by a
string. Whenever we repeat a link to a same object or a cross-
ing through a same object2 (regardless the possible cross-
ing direction), we form a loop in a string. For instance, in
chain(Str2) explained above we can detect the two loops:

chain(Str2) = [B,

l(Str2,1)︷ ︸︸ ︷
R−

3 , OutL+
1 , R

+
3 , B︸ ︷︷ ︸

l(Str2,0)

]

As said before, we denote the loops using the position in
chain(S) (the first position is 0) of the origin of the first seg-
ment forming the loop. In this case, we have a loop formed
by the pair of links to object B, that close both tips of the

2If we represent the string tips S−, S+ at both ends of the chain,
these are the only exceptions. However, if we make them to coin-
cide in the space, that is, we add the assumption that S− = S+

represent the same object, then they form again a loop.

string. This loop is denoted by l(Str2, 0) because the first
B is at position 0. There is no ambiguity, since the closing
part of the loop will be the next occurrence of B in the list,
from left to right (in this case, position 4, which is the last
one). The second loop is formed by the two crossings of ring
R3, in this case, in opposite directions. This loop is denoted
l(Str2, 1) signifying that the origin of the loop is at posi-
tion 1 (crossing R−

3). We can deduce that the loop’s end will
be the next position to the right in which we find a crossing
through object R3 : in the example, position 3.

The same object can form several loops in the string, as
in:

chain(S) = [︸ ︷︷ ︸
l(S,0)

R1+, R2−, R3+,

l(S,3)︷ ︸︸ ︷
R1−, R4−, R1+]

We can use Allen’s interval algebra (Allen 1983) to clas-
sify the possible relations involving a pair of loops x and y in
a same string. However, not all relations in Allen’s algebra
are possible here, since two different loops cannot share the
same left (resp. right) end. As a result, the relations “starts,”
“finishes” and their inverses are not allowed. This leaves the
remaining 9 possibilities: “before,” “meets,” “overlaps,” and
“during”, their inverses, plus the relation “equal.”

The next section presents a chain description of one pos-
sible solution for the Easy-does-it puzzle.

Solution Steps
This section presents a sequence of changes in the puzzle’s
states that is one possible solution to the puzzle. We do not
claim that this is the optimal solution, or that the formal-
isation below solves all the representational issues related
to the Easy-does-it, but that it is an initial formal descrip-
tion on top of which interesting points can be discussed re-
garding the representation and reasoning about strings and
loops. More importantly, the sequence of states in terms of
chains of crossings may help us to explore the general ef-
fect of the actions involved in terms of loop creation and re-
moval, something we only outline here, leaving its complete
formalisation for future study.

As we saw before, the initial state shown in Figure 7 cor-
responds to the chains (1)-(3). We analyze next, step by step,
each state transition in the puzzle solution.

First transition The first step of the solution (from state
S0 (Fig. 7) to S1 (Fig. 8(a))) involves passing the segment
Str2 : 1 towards R+

1 . This results on the state shown in Fig-
ure 8(a), with the following chain description.

chain(P, S1) = [B,R+
2 , R

+
1 , S]

chain(Str1, S1) = [R2, l(Str2, 1)
+, R1]

chain(Str2, S1) = [B,R−
3 , R

+
1 , R

−
1 , R

+
3 , B]

In this process we have created a third loop in Str2,
l(Str2, 2), that can be easily seen as the pair 〈R+

1 , R
−
1 〉 in

chain(Str2). On the other hand, l(Str2, 1) is delimited now
by R3, segment Str2 :1, R1 and segment Str2 :3.

Note that the crossing through OutL1 has disappeared
from chain(Str2).

B

S

R1

R2

R3

Str2

Str1

P

(a) State S1.

B

S

R1

R2

R3

Str2

Str1

P

(b) State S2.

Figure 8: First and second transitions.

Second transition The second action is to pass the sphere
S towards l(Str2, 2)+, resulting in state S2 (Fig. 8(b)):

chain(P, S2) = [B,R+
2 , R

+
1 , l(Str2, 2)

+, S]

chain(Str1, S2) = [R2, l(Str2, 1)
+, R1]

chain(Str2, S2) = [B,R−
3 , R

+
1 , R

−
1 , R

+
3 , B]

Third transition Then the segment Str2 : 2 should be
pulled towards R−

1 (resulting on the state S3, Fig. 9(a)):

B

S

R1

R2

R3

Str2

Str1

P

(a) State S3.
B

S

R1

R2

R3

Str2

Str1

P

(b) State S4.

Figure 9: Third and fourth transitions.

chain(P, S3) = [B,R+
2 , l(Str2, 1)

+, R+
1 , S]

chain(Str1, S3) = [R2, l(Str2, 1)
+, R1]

chain(Str2, S3) = [B,R−
3 , R

+
3 , B]

Notice that this movement has collapsed the segments
Str2 :1, Str2 :2 and Str2 :3 into a single Str2 :1. Similarly,
loops l(Str2, 1) and l(Str2, 2) have become a single loop
l(Str2, 1) again, as we had in the initial state. It is worth
pointing out also that, although the new constraint added
to string 2 (that it goes around the post) is not shown in
chain(Str2, S3), it is clearly represented on chain(P, S3).

Fourth transition We could begin passing R1 down
l(Str2, 1)

−. This should leave a loop in Str1 as depicted
in Fig. 9(b) (state S4). We would, then, pull from segment
Str1 :1 (the one forming the new loop) down to l(Str2, 1)

−

(state S5, Fig, 10(a)).
However, state S5 could be directly reached in one step

by considering a single action pull(Str1 : 1, l(Str2, 1)
−),

that is, when being at S3, pass the second segment Str1 : 1
of the string Str1 down to l(Str2, 1)

−. As ring R1 is linked
to this segment, we get that the ring also crosses through
l(Str2, 1)

−. This results on the state represented on Fig.
10(a) with the following chain description:

chain(P, S5) = [B,R+
2 , R

+
1 , l(Str2, 1)

+, S]

chain(Str1, S5) = [R1, R2]

chain(Str2, S5) = [B,R−
3 , R

+
3 , B]

B

S

R1

R2

R3

Str2

Str1

P

(a) State S5.

B

S

R1

R2

R3

Str2

Str1

P

(b) State S6.

Figure 10: Fifth and sixth transitions.

Fifth transition The next action is to move the loop in
Str2 upwards above the sphere, obtaining state S6 (Fig.
10(b)). Formally, this means passing the sphere S down to
l(Str2, 1)

−, that is pass(S, l(Str2, 1)
−), as shown below.

The chain description of Figure 10(b) is described below.

chain(P, S6) = [B,R+
2 , R

+
1 , S]

chain(Str1, S6) = [R1, R2]

chain(Str2, S6) = [B,R−
3 , R

+
3 , B]

Sixth transition Finally, the loop in Str2, formed by R3,
can be removed. Formally, pull segment Str2 : 1 towards
R+

3 , i.e., pull(Str2 :1, R+
3), resulting in the following chain

description (that describe state S7, represented in Figure 11).

chain(P, S7) = [B,R+
2 , R

+
1 , S]

chain(Str1, S7) = [R1, R2]

chain(Str2, S7) = [B,B]

Note that the main ring R is not present in any of the
last chain descriptions. Therefore, R is free from the set of
entangled objects, solving the puzzle.

B

S

R1

R2

R3

Str2

Str1

P

Figure 11: State S7.

Actions creating and removing loops
In transition 1 and 6 (and also 4, if we consider an inter-
mediate step) we had either creation or unwinding of loops.
Note that we can undo all the steps in reverse order from
the goal situation to the initial one. Each action has an anal-
ogous reverse movement. Transition 1 creates a loop when
done forward, but we can also consider the loop removal
when done backwards. Transition 6 removes the loop when
done forward and creates it if done backwards.

Let us start by considering the idea of loop creation. Apart
from passing an object to a hole side, we need to consider
now an action pick(x : i, p) meaning that we pick some
arbitrary point in segment x : i towards the hole side p. This
pick movement does not drag the whole segment completely.

In principle, pick always be executed regardless the origin
and target of segment x : i and will always create a new
loop3. Figure 12 illustrates the behavior of pick by showing
two consecutive applications of this action. Note how, when
we do the second pick on the same string portion, we do
not return to the initial situation, but we create a new loop
instead.

p’
p

x:pred(i) x:succ(i)

x:pred(mid(i)) x:succ(mid(i))

x:mid(mid(i))

x:i

p’
p

p’
p

x:pred(i) x:succ(i)

x:mid(i)

s s1=do(pick(x:i,p),s) s1=do(pick(x:mid(i),p),s)

Figure 12: Two consecutive pick actions.

The second movement related to loops we need to con-
sider is the action of removing a loop. This movement is
done by completely pulling a string segment towards some
hole side. Note the difference between pull(x : i, p) in Fig-
ure 13 and pick(x : i, p) in Figure 12.

Situation s do(pull(x:i,p),s)

p
p’

p
p’

x:i

x:join(i,j,k)x:j

x:j

x:k

x:k

x:i

Figure 13: Removing the loop by pulling a string segment.

Using these actions, we can describe the sequence of
movements as follows:

1. pick(Str2 : 1, R+
1)

2. pass({P+, S}, l(Str2, 2)+)
3. pull(Str2 : 2, R−

1)

4. pass({Str+1 , R1}, l(Str2, 1)−) and then
pull(Str1 : 1, l(Str2, 1)

−) or perhaps just the latter
5. pass({P+, S}, l(Str2, 1)−

6. pull(Str2 : 1, R+
3)

One could expect that for moving back from the goal to
the initial state, we should be able to use the same actions (in
reverse order) and simply switch their crossing directions.
However, this is not the case, since the reverse movement
of a pick action sometimes must be a pull action. Besides,
the segments numbering vary depending on the direction in

3We are assuming an ideal string that can be arbitrarily
stretched. In the real world, the number of loops may be limited
by their size and the string length.

which we apply the movement. If we want to reverse the
sequence of movements, the actions should be instead:

1. pick(Str2 : 0, R+
3)

2. pass({P+, S}, l(Str2, 1)+)
3. pass({Str+1 , R1}, l(Str2, 1)+)
4. pick(Str2 : 1, R+

1)

5. pass({P+, S}, l(Str2, 2)−)
6. pull(Str2 : 2, R−

1)

Discussion and Conclusions
In this paper we discussed the challenging problem of for-
mally describing a particular characteristic of flexible ob-
jects such as strings: their capability of making loops that
can be used (and reasoned about) as holes in spatial reason-
ing processes. We outlined an initial formalisation based on
previous investigations on an automated solution for spatial
puzzles. There is, however, still a long way to go before de-
ploying this initial formalisation in a real application setting.
For instance, we have provided a representation for the states
and actions involved in the puzzle solution, but a complete
formal description for the derivation of action effects is still
part of ongoing work. In particular, we have distinguished
between inner and outer string loops. While detection and
manipulation of inner loops is clearer now, the treatment of
outer loops is more elusive, since they are formed by entan-
glements of different objects.

Another aspect under study is the “reconstruction” of each
state in the puzzle by physically passing one of the strings
from one of its tips to the other and traversing all the hole
crossings. For instance, in Figure 10(a), suppose we do not
have string Str2 and we want to add it to get state S5. To this
aim, we would join Str−2 to the base B, then pass tip Str+2 to
R−

3 and R+
3 forming the loop l(Str2, 1), and finally joining

it to B again. This sequence of actions would not reconstruct
the puzzle state since, when forming l(Str2, 1) we need to
further specify that we embrace the post segment P : 3.
In this way, a new “embracing” action would be required so
that, when closing a loop, we must specify which long object
segments may be embraced by that new loop.

Besides, immediately related to this, we leave for a fu-
ture work the possibility of knots in our domain. We are also
studying the physical feasibility of the effects of these ac-
tions by simulating their effects on a 3D graphical model of
the puzzle.
Acknowledgements Paulo E. Santos acknowledges financial
support from FAPESP grant 2012/04089-3, and CNPq “bolsa de
produtividade em pesquisa” grant 303331/2011-9. Pedro Cabalar
was partially supported by Spanish MEC project TIN2009-14562-
C05-04.

References
Allen, J. F. 1983. Maintaining knowledge about temporal intervals.
Communications of the ACM 26(11):832–843.
Cabalar, P., and Santos, P. 2006. Strings and holes: an exercise on
spatial reasoning. In Proc. of SBIA-IBERAMIA, volume 4140 of
LNAI, 419–429.
Cabalar, P., and Santos, P. E. 2011. Formalising the fisherman’s
folly puzzle. Artif. Intell. 175(1):346–377.
Casati, R., and Varzi, A. C. 1999. Parts and Places. MIT press.
Clementini, E., and Felice, P. D. 1997. A global framework for
qualitative shape description. GeoInformatica 1(1):11–27.
Cohn, A. G., and Hazarika, S. M. 2001. Qualitative spatial repre-
sentation and reasoning: An overview. Fundamenta Informaticae
46(1-2):1–29.
Cohn, A. G.; Bennett, B.; Gooday, J.; and Gotts, N. 1997. Rep-
resenting and reasoning with qualitative spatial relations about re-
gions. In Stock, O., ed., Spatial and Temporal Reasoning. Kluwer
Academic Publishers. 97 – 134.
Guesgen, H. 2002a. From the egg-yolk to the scrambled-egg the-
ory. In Proc. FLAIRS, 476–480.
Guesgen, H. 2002b. Reasoning about distance based on fuzzy
sets. Applied Intelligence (Special Issue on Spatial and Temporal
Reasoning).
Hernández, D.; Clementini, E.; and di Felice, P. 1995. Qualitative
distances. In Kuhn, W., and Frank, A., eds., LNAI. Springer-Verlag.
45–58.
Ligozat, G. 2011. Qualitative Spatial and Temporal Reasoning.
Wiley.
McCarthy, J., and Hayes, P. 1969. Some philosophical problems
from the standpoint of artificial intelligence. Machine Intelligence
Journal 4:463–512.
Meathrel, R. C., and Galton, A. P. 2001. A hierarchy of boundary-
based shape descriptors. In Proc. of IJCAI, 1359–1364.
Pearce, D., and Valverde, A. 2008. Quantified equilibrium logic
and foundations for answer set programs. In 24th International
Conference on Logic Programming, volume 5366 of Lecture Notes
in Computer Science. Springer. 546–560.
Randell, D., and Witkowski, M. 2002. Building large composition
tables via axiomatic theories. In Proc. of KR, 26–35.
Randell, D.; Cui, Z.; and Cohn, A. 1992. A spatial logic based on
regions and connection. In Proc. of KR, 165–176.
Randell, D.; Witkowski, M.; and Shanahan, M. 2001. From images
to bodies: Modeling and exploiting spatial occlusion and motion
parallax. In Proc. of IJCAI, 57–63.
Santos, P. E., and Cabalar, P. 2008. The space within fisherman’s
folly: Playing with a puzzle in mereotopology. Spatial Cognition
& Computation 8(1-2):47–64.
Santos, P., and Shanahan, M. 2002. Hypothesising object relations
from image transitions. In van Harmelen, F., ed., Proc. of ECAI,
292–296.
Santos, P., and Shanahan, M. 2003. A logic-based algorithm for
image sequence interpretation and anchoring. In Proc. of IJCAI,
1408–1410.
Santos, P. 2007. Reasoning about depth and motion from an ob-
server’s viewpoint. Spatial Cognition and Computation 7(2):133–
178.
Schlieder, C. 1996. Qualitative shape representation. In Burrough,
P. A., and Frank, A. U., eds., Geographic Objects with Indetermi-
nate Boundaries. Taylor & Francis Inc. 123–140.

