Meta-level Constraints for Complex Event Processing in Logical Agents

Stefania Costantini and Giovanni De Gasperis
Dip. di Ingegneria e Scienze dell’Informazione (DISIM), Universita di L’ Aquila,
Coppito 67100, L’ Aquila, Italy
stefania.costantini, giovanni.degasperis@univaqg.it

Abstract

“Brittleness” can be intended as the propensity of an agent
to perform poorly or fail in the face of circumstances not
explicitly considered by the agent’s designer. In opposition
to brittleness, ”Versatility” and “Perturbation-tolerance” ex-
press the ability of being able to cope with previously unan-
ticipated situations. These properties are particularly impor-
tant in many practical applications which have the need to
actively monitor vast quantities of event data to make auto-
mated decisions and take time-critical actions, i.e., perform
”Complex Event-Processing”. In this paper, we propose tem-
poral meta-level constraints to be dynamically checked, that
allow an agent to timely self-check and adapt its behavior,
and in particular its reactive modalities.

Introduction

A well-known and particularly difficult problem in Al is the
so-called “brittleness” problem: automated systems tend to
“break” when confronted with even slight deviations from
the situations specifically anticipated in full detail by their
designers. Brittleness and inflexibility are often attributed
to rule-based systems (see, e.g., (SOAR-Research-Group
2010)), and consequently to logical agents, due to their sup-
posed over-commitment to particular courses of action.

In opposition to brittleness, (Brachman 2006) mentions
Versatility as the ability of being able to perform previously
unanticipated tasks. (Anderson and Perlis 2005) introduce
the concept of Perturbation Tolerance, where a perturba-
tion is any unanticipated change, either in the world or in
the system itself, that impacts an agent’s performance. To
achieve Perturbation Tolerance, (Anderson and Perlis 2005)
define a time-based active logic and a Metacognitive Loop
(MCL), that involves a system monitoring, reasoning and
meta-reasoning about and if necessary altering its own be-
havior.

In past work, we have introduced the possibility of
maintaining knowledge bases by means of temporal-logic-
based special meta-constraints to be dynamically checked
with a certain (customizable) frequency. This approach has
been applied to agent run-time self-checking(cf. (Costantini
2013b) and (Costantini 2012) for a preliminary longer ver-
sion), and to memory management (Costantini and Gasperis
2013).

These constraints are based upon a simple interval tem-
poral logic particularly tailored to the agent realm, A-ILTL
(‘Agent-Oriented Interval LTL’, LTL standing as customary
for ‘Linear Temporal Logic’). Thus, properties can be de-
fined that should hold according to what has happened and
to what is supposed to happen or not to happen in the future,
also considering partially specified event sequences. A-ILTL
constraints be seen as composing a kind of MCL, where A-
ILTL can be seen as an active logic.

As A-ILTL constraints are defined over formulas of an un-
derlying logic language L, a first contribution of this paper is
to make A-ILTL constraints independent of £. By linking A-
ILTL constraints to the Evolutionary semantics of agent pro-
grams (originally introduced (Costantini and Tocchio 2006)
and summarized below), such constraints can in fact be de-
fined for any model-based (or initial-algebra-based) logi-
cal framework. We thus obtain a fairly general setting, that
could be adopted in several logic agent-oriented languages
and formalisms. In particular, one such language is DALI
(Costantini and Tocchio 2002; 2004), where we have proto-
typically implemented the approach '.

A second contribution of this paper is the proposal to ex-
ploit A-ILTL constraints, that were originally proposed for
agent run-time self-repair or self-improvement, for the defi-
nition of complex reactivity patterns, dynamically adaptable
to changing circumstances. Event processing (also called
CEP, for “Complex Event Processing”) has emerged as a
relevant new field of software engineering and computer sci-
ence (Chandy, Etzion, and von Ammon 2011). In fact, a lot
of practical applications have the need to actively monitor
vast quantities of event data to make automated decisions
and take time-critical actions (Paschke and Kozlenkov 2009;
Etzion 2010; Paschke, Vincent, and Springer 2011; Vin-
cent 2011) (cf. also the Proceedings of the RuleML Work-
shop Series). Software products for event processing have
appeared on the market, provided by major software ven-
dors and by many start-up companies around the world (see
e.g. (Paschke, Vincent, and Springer 2011; Vincent 2011)
and the references therein). Many of the current approaches
are declarative and based on rules, and often on logic-

'DALI is an agent-oriented extension to prolog that we have
defined and developed in previous work (cf. (Costantini 2013a) for
a comprehensive list of references about DALI, while the DALI
interpreter is publicly available at (Costantini et al. 2012)).

programming-like languages and semantics: for instance,
(Paschke and Kozlenkov 2009) is based upon a specif-
ically defined interval-based Event Calculus. In (Costan-
tini, Dell’ Acqua, and Tocchio 2007) and later in (Costantini
2011; Costantini and De Gasperis 2012) we tackled the is-
sue of complex reactivity in logical agents, by considering
the possibility of choosing among different possible reactive
patterns by means of complex preferences. In this paper, we
show how A-ILTL temporal constraints may help to enforce
suitable reaction patterns upon need. In this sense, A-ILTL
constraints contribute to alleviate brittleness and improve
versatility, since they make the agent able to react flexibly in
the face of changing and unexpected circumstances: in fact,
in our proposal reaction patterns can be defined on partially
specified event sequences.

We assume that the reader is to some extent familiar with
logic programming, and in particular with prolog-like logic
programming, and to a small extent with Answer Set Pro-
gramming (called ASP’ in the rest of the paper for the
sake of conciseness). The reader may refer to (Apt and Bol
1994) for the former and to (Gelfond 2007) for the latter, and
to the references therein. As it is well-known, Answer Set
Programming (Gelfond and Lifschitz 1988; Lifschitz 1999;
Marek and Truszczyniski 1999; Baral 2003) is a relatively re-
cent and up to now well-established paradigm of logic pro-
gramming which is not aimed at query-answering. Rather,
for given answer set program, a ASP solver provides one,
many (or no) answer sets. Each answer set represents a solu-
tion of the problem expressed in the program: if for instance
the program aims at finding Hamiltonian paths in a graph,
each answer set (if any) represents one such path.

Evolutionary Semantics

The Evolutionary semantics (Costantini and Tocchio 2006)
is meant at providing a high-level general account of evolv-
ing agents, trying to abstract away from the details of spe-
cific agent-oriented frameworks. To this aim we define, in
very general terms, an agent as the tuple Ag = < Py, E >
where A is the agent name and P4 (that we call “agent pro-
gram”) describes the agent according to some agent-oriented
language L. F is the set of the events that the agent is able to
recognize or determine (so, E' includes actions that the agent
is able to perform), according to the specific agent-oriented
framework.

Program P, written by the programmer is in general
transformed into an initial agent program Py by means of an
initialization step. Later on, Py will go into execution, and
will evolve according to events that happen, actions which
are performed, etc., Evolution in our setting is recorded
via corresponding program-transformation steps, each one
transforming P; into P, 1, thus producing a Program Evo-
lution Sequence PE = [Py, ..., Py, ...]. The program evo-
lution sequence will imply a corresponding Semantic Evo-
lution Sequence M E = [My, ..., M,,...] where M; is the
semantics of P; according to the semantics of £. Notice in
fact that the approach is parametric w.r.t £. Let H be the his-
tory of an agent as recorded by the agent itself (in a form that
will depend upon the specific agent-oriented framework),
i.e., H includes agent’s memories. For instance, in DALI the

history consists of the set P of most recent “past events”
and set PNV of previous instances (e.g., P may contain the
last measure of temperature while PNV may contain older
ones), plus past constraints that manage recording of events
in the two sets.

Definition 1 (Evolutionary semantics) Ler Ag be an
agent. The evolutionary semantics €9 of Ag is a tuple
(H, PE, ME), where H is the history of Ag, and PE and
ME are respectively its program and semantic evolution
sequences.

The next definition introduces the notion of instant view
of 49, at a certain stage of the evolution (which is in prin-
ciple of unlimited length).

Definition 2 (Evolutionary semantics snapshot) Let

Ag be an agent, with evolutionary semantics €9 =
(H,PE, ME). The snaphot at stage i of ¢ is the tuple
(H;, P;, M), where H; is the history up to the events that
have determined the transition from P;_; to P;.

In (Costantini and Tocchio 2006) we have coped in de-
tail with evolutionary semantics of DALI language, specify-
ing which program transformation steps are associated with
DALI language constructs. The approach however is in prin-
ciple applicable to many other logical agent-oriented frame-
works.

A-ILTL

For defining properties that are supposed to be respected by
an evolving system, a well-established approach is that of
Temporal Logic, and in particular of Linear-time Tempo-
ral Logics (LTL, cf., e.g., (Emerson 1990)). These logics
are called ‘linear’ because (in contrast to ‘branching time’
logics) they evaluate each formula with respect to a vertex-
labeled infinite path (or “state sequence”) sgsp ... where
each vertex s; in the path corresponds to a point in time
(or “time instant” or “state”). In what follows, we use the
standard notation for the best-known LTL operators.

Based upon our prior work, in (Costantini 2012) we
formally introduced an extension to the well-known lin-
ear temporal logic LTL based on infervals, called A-ILTL
for ‘Agent-Oriented Interval LTL’. Though, as discussed in
(Costantini 2012), several “metric” and interval temporal
logic exist, the introduction of A-ILTL is useful in the agent
realm because the underlying discrete linear model of time
and the complexity of the logic remains unchanged with re-
spect to LTL. This simple formulation can thus be efficiently
implemented, and is nevertheless sufficient for expressing
and checking a number of interesting properties of agent sys-
tems.

Formal syntax and semantics of A-ILTL operators (also
called below “Interval Operators”) are fully defined in
(Costantini 2012). A-ILTL expressions are (like plain LTL
ones) interpreted in a discrete, linear model of time. For-
mally, this structure is represented by M = (N, Z) where,
given countable set 3 of atomic propositions, interpretation
function Z : N+ 2> maps each natural number i (repre-
senting state s;) to a subset of .. Given set F of formulas

built out of classical connectives and of LTL and A-ILTL op-
erators (where however nesting of A-ILTL operators is not
allowed), the semantics of a temporal formula is provided
by a satisfaction relation: for ¢ € F and ¢ € N we write
M.,i = ¢ if, in the satisfaction relation, ¢ is true w.r.t.
M, i. We can also say (leaving M implicit) that ¢ holds at
i, or equivalently in state s;, or that state s; satisfies p. A
structure M = (N,7) is a model of ¢ if M,i = ¢ for
some ¢ € N.
Some among the A-ILTL operators are the following.

Definition 3 Let ¢ € F and let m,n be positive integer
numbers.

F,, »n (eventually (or “finally”) in time interval). F,, ,¢
states that ¢ has to hold sometime on the path from state
Sm, to state sy. Le., M,i = F,, ¢ if there exists j such
that j > mand j < nand M,j |E . Can be customized
into F,,,, bounded eventually (or “finally”), where o should
become true somewhere on the path from the current state to
the (m)-th state after the current one.

G, (always in time interval). G, ., states that @ should
become true at most at state s,, and then hold at least un-
til state sy. Le., M,i |= G if for all j such that
j>mandj < n M,j |E . Can be customized into
G, bounded always, where ¢ should become true at most
at state Sy,.

Ny, (never in time interval). N, ¢ states that ¢ should
not be true in any state between s, and s,, ie, M,i =
Ny, .nt if there not exists j such that j > m and j < n and
M, j E ¢

A-ILTL and Evolutionary Semantics

In this section, we refine A-ILTL so as to operate on a se-
quence of states that corresponds to the Evolutionary Se-
mantics defined before. In fact, states in our case are not
simply intended as time instants. Rather, they correspond to
stages of the agent evolution. Time in this setting is consid-
ered to be local to the agent, where with some sort of “in-
ternal clock™ is able to time-stamp events and state changes.
We borrow from (Henzinger, Manna, and Pnueli 1992) the
following definition of timed state sequence, that we tailor
to our setting.

Definition 4 Let o be a (finite or infinite) sequence of states,
where the ith state e;, e; > 0, is the semantic snaphots at
stage i EZ-Ag of given agent Ag. Let T be a corresponding
sequence of time instants t;, t; > 0. A timed state sequence
for agent Ag is the couple pay = (o, T). Let p; be the i-th
state, 1 > 0, where p; = (e;,t;) = <€;4g,ti>.

We in particular consider timed state sequences which are
monotonic, i.e., if e;11 # e; then t;;1 > t;. In our setting, it
will always be the case that ;11 # e; as there is no point in
semantically considering a static situation: as mentioned, a
transition from e; to e;4; will in fact occur when something
happens, externally or internally, that affects the agent.

Then, in the above definition of A-ILTL operators, it is
immediate to let s; = p;. This requires however a refine-
ment: in fact, in a writing Op,, or Op,, ,, occurring in an

agent program parameters m and n will not necessarily co-
incide with time instants of the above-defined timed state
sequence. To fill this gap, in (Costantini 2012) a suitable ap-
proximation is introduced.

We need to adapt the interpretation function Z of LTL
to our setting. In fact, we intend to employ A-ILTL within
agent-oriented languages, where we restrict ourselves to
logic-based languages for which an evolutionary semantics
and a notion of logical consequence can be defined. Thus,
given agent-oriented language £ at hand, the set ¥ of propo-
sitional letters used to define an A-ILTL semantic frame-
work will coincide with all ground expressions of £ (an
expression is ground if it contains no variables, and each
expression of £ has a possibly infinite number of ground
versions). A given agent program can be taken as standing
for its (possibly infinite) ground version, as it is customar-
ily done in many approaches. Notice that we have to distin-
guish between logical consequence in £, that we indicate as
=, from logical consequence in A-ILTL, indicated above
simply as |=. However, the correspondence between the two
notions can be quite simply stated by specifying that in each
state s; the propositional letters implied by the interpretation
function Z correspond to the logical consequences of agent
program P;:

Definition S Let £ be a logic language. Let Expr, be the
set of ground expressions that can be built from the alphabet
of L. Let pagy be a timed state sequence for agent Ag, and
let p; = (Efg,ti> be the ith state, with 5?9 = (H;, P;, M;).
An A-ILTL formula 7 is defined over sequence p a4 if in its
interpretation structure M = (N, I), index i € N refers
to p;, which means that ¥ = Expr, and T : N~ 2% is
defined such that, givenp € &, p € Z(i) iff P; = p. Such
an interpretation structure will be indicated with M*9. We
will thus say that T holds/does not hold w.r.t. p ag.

A-ILTL properties will be verified at run-time, and thus
they act as constraints over the agent behavior’. In an im-
plementation, verification may not occur at every state (of
the given interval). Rather, sometimes properties need to be
verified with a certain frequency, that can even be differ-
ent for different properties. Then, we have introduced a fur-
ther extension that consists in defining subsequences of the
sequence of all states: if Op is any of the operators intro-
duced in A-ILTL and & > 1, Opk is a semantic variation
of Op where the sequence of states pa, of given agent is
replaced by the subsequence sg, Sk, , Sk, , - - - Where for each
kryr > 1, k.- modk =0,ie., k. =g x k for some g > 1.

A-ILTL formulas to be associated to given agent can
be defined within the agent program, though they consti-
tute an additional but separate layer, composed of formulas
{m,...,7}. Agent evolution can be considered to be “sat-
isfactory” if it obeys all these properties.

Definition 6 Given agent Ag and given a set of A-ILTL ex-
pressions A = {Ty,...,7}, timed state sequence p 44 is co-
herent w.r.t. A if A-ILTL formula G{with{ =11 A ... ATy,
holds.

By abuse of notation we will indifferently talk about A-ILTL
rules, expressions, or constraints.

Notice that the expression G is an invariance property
in the sense of (Manna and Pnueli 1984). In fact, coherence
requires this property to hold for the whole agent’s “life”. In
the formulation G, ,,¢ that A-ILTL allows for, one can ex-
press temporally limited coherence, concerning for instance
“critical” parts of an agent’s operation. Or also, one might
express forms of partial coherence concerning only some
properties.

An “ideal” agent will have a coherent evolution, whatever
its interactions with the environment can be, i.e., whatever
sequence of events arrives to the agent from the external
“world”. However, in practical situations such a favorable
case will seldom be the case, unless static verification has
been able to ensure total correctness of agent’s behavior. In-
stead, violations will occasionally occur, and actions should
be undertaken so as to attempt to regain coherence for the
future.

A-ILTL rules may imply asserting and retracting rules
or sets of object rules (“modules”). In this setting, we are
able to consider assert and retract as special A-ILTL opera-
tors, to which we provide a formal semantics (cf. (Costantini
2012)).

Complex Reaction: Past Work

In order to determine which actions can possibly be per-
formed in reaction to an event in a given situation, in
(Costantini 2011) we have introduced reactive ASP modules
(ASP standing for “Answer Set Programming”) that describe
a situation and, triggered by events that have happened, will
have answer sets which encompass the possible reactions to
these events. A reactive ASP module has an input/output in-
terface. The input interface specifies the event(s) that trigger
the module. The output interface specifies the actions that
the module answer sets (if any) can possibly encompass.
Each answer set can give as output one or more actions, that
can be selected either indifferently or according to prefer-
ences/priorities. So, there will be at least as many actions to
consider (according to preconditions and preferences) as the
number of answer set of M.

For preferences, some of the authors of this paper have
proposed approaches to preferences in agents (Costantini,
Dell’ Acqua, and Tocchio 2007) or more generally in logic
languages (Costantini and Formisano 2009; 2011). In par-
ticular, the approach defined in (Costantini and Formisano
2009) allows for the specification of various kinds of non-
trivial preferences.

It can also be interesting to define reaction in terms of
meta-statements involving possibility and necessity w.r.t.
module M (cf. (Costantini 2011)), possibility of atom A
with (pseudo-modal) meaning that M belongs to some an-
swer set of M, and necessity that A belongs to every an-
swer set of M. Precisely, given answer set program II (also
called 'module’) with answer sets as M7, ..., My, and an
atom A, the possibility expression P(w;, A) is deemed to
hold (w.r.t. IT) whenever A € M, w; € {1,...,k}.
The possibility operator P(A) is deemed to hold whenever
M € {M,..., My} such that A € M. Given answer
set program II with answer sets M1, ..., M, and an atom
A, the necessity expression N(A) is deemed to hold (w.r.t.

IT) whenever A € (M; N ...N Mj). Module II can be im-
plicit (if unique) or explicit, where expressions take the form
P(I1, w;, A), P(II, A) and N (II, A) respectively.

Below are sample reactive patterns discussed in (Costan-
tini and De Gasperis 2012), in a syntax which is reminiscent
of DALLI. In the first example, reaction to event ev E/ (events
are indicated with postfix FE, reaction is indicated with :>)
can be either any action produced by M as a possible re-
action, or a necessary action, i.e., an action that belongs to
all the answer sets of M. The latter is preferred in a critical
situation, connective > expressing simple conditional pref-
erence: the former option is preferred over the latter if the
condition after the :- holds. Otherwise, any of the two op-
tions can be indifferently taken.

evE > necessary(M)|action(M).
necessary(M) > action(M):-critical _situation.

The second example states that if a baby is hungry one
should feed the baby with the available food (feeding is an
action, indicated with postfix A), paying attention to choose
the healthier. The conjunction food(F), available(F') pro-
vides a number of values for F', among which one is cho-
sen that corresponds to a maximum in the partial order
imposed by the binary predicate healthier. This construct
for complex preference, the p-set, was originally introduced
in (Costantini and Formisano 2009).

baby_is_hungryFE >
{feed_babyA(F) : food(F), available(F) :
healthier}.

A-ILTL for Complex Reaction

In this section we illustrate the usefulness of A-ILTL con-
straints for defining and enforcing complex reaction pat-
terns. To this aim, we use the pragmatic form that we
have adopted in DALI, where an A-ILTL expression is rep-
resented as OP(m, n; k) p: m,n define the time interval
where (or since when, if n is omitted) expression OP ¢ is
required to hold, and k (optional) is the frequency for check-
ing whether the expression actually holds. For instance,
EVENTUALLY (m,n; k) ¢ states that ¢ should become
true at some point between time instants m and n.

In rule-based logic programming languages like DALI,
we restrict ¢ to be a conjunction of literals. In pragmatic
A-ILTL formulas, ¢ must be ground when the formula is
checked. However, we allow variables to occur in an A-
ILTL formula, to be instantiated via a context x (we then
talk about contextual A-ILTL formulas). Notice that, for the
evaluation of ¢ and y, we rely upon the procedural seman-
tics of the ‘host’ language.

In the following, a contextual A-ILTL formula 7 will im-
plicitly stand for the ground A-ILTL formula obtained via
evaluating the context. In (Costantini 2012) we have spec-
ified how to operationally check whether such a formula
holds. This by observing that for most A-ILTL operators
there is a crucial state where it is definitely possible to as-
sess whether a related formula holds or not in given state
sequence, by observing the sequence up to that point and
ignoring the rest.

The following formulation deals with complex reaction
according to a temporal condition. The way reaction is per-

formed will depend upon the underlying language £, and
will be defined by an expression that we call reactive pat-
tern. In DALI for instance, it can be any of the patterns de-
fined in (Costantini and De Gasperis 2012).

Definition 7 A reactive A-ILTL rule is of the form (where
M, N, K can be either variables or constants)
OP(M,N;K)p::x+p

where:(i) OP(M,N; K)p :: x is a contextual A-ILTL for-
mula, called the monitoring condition, that should involve
the observation of either external or internal events; (ii) p
is called the reactive part of the rule, and it consists of a
reactive pattern.

Whenever the monitoring condition (automatically
checked at frequency K) is violated (i.e., it does not hold)
within given interval, then the reactive part p is executed.

Take for instance the example of a controller that has to
keep the temperature in office hours (say between 8 a.m. and
5 p.m.) in the range 19-21 (celsius degrees). In this case,
temperature is an external event which is observed at a cer-
tain frequency by the system. If the condition is violated,
a reaction will try to restore the wished-for situation. How-
ever, we assume to be in a smart building (where in fact the
temperature is monitored by intelligent agents) where one is
able to select, in order to modify the temperature, the best
suitable energy source, for instance the less expensive. No-
tice that at different times of the day different fonts of en-
ergy can be less expensive. Remember also that the A-ILTL
constraints is dynamically checked at a certain frequency
(the default one if not specified explicitly, here say every
10 minutes). So, in given interval the monitoring condition
will sometimes succeed (then nothing is done) and some-
times fail, where in the latter case the font of energy .S which
is cheaper in that moment is used in order to suitably af-
fect the temperature and try to keep it in the specified range.
In the proposed approach, this can be formalized as follows
(where, as there are no variables, context is omitted):

ALWAYS(8 : 00 a.m., 5 : 00 p.m.; 10m)
19 < temperature < 21 =+
modify_temperatureA(S), S IN

{external _electricity,
gas,
solar_panel_electricity :
less_expensive }

The next example is a meta-statement expressing open-
minded commitment in agents, i.e., that a goal should be
pursued until no longer believed possible. We suppose that
a goal GG being possible is evaluated w.r.t. a module M that
represents the context for G (notation P(G, M)). In case
the goal is still deemed to be possible and is not timed-out
but has not been achieved yet, then the reaction consists in
re-trying the goal, that might imply either resuming a sus-
pended plan, or a re-planning.

NEVER
goul(G),
eval_context(G, M), P(G, M),
not timed_out(G)
not achieved(G)-+
retry(Q)

Another possibility is not simply retrying the goal, but
also reconsidering the evaluation context, that might for
some reason have become obsolete. Thus, the reactive part
might be

retry(G), reconsider_context(G, M, M")

As an effect, if the goal should still remain unachieved, the
evaluation module might be updated. Then, a subsequent
check of the A-ILTL constraint might lead to stop retrying
the goal.

Each element of the conjunction composing the reactive
part can have preconditions. If preconditions do not hold for
some element, then that element is skipped. In case for in-
stance one would add the precondition that one can retry a
goal if sufficient resources are available, i.e.,

retry(G) :< have_resources(G)

then the goal would not be retried in the negative case.

Evolutionary Expressions

It can be useful to define properties to be checked upon ar-
rival of event sequences, of which however only relevant
events (and their order) should be considered. To this aim
we introduce a new kind of A-ILTL constraints, that we call
Evolutionary A-ILTL Expressions. To define partially known
sequences of any length, we admit for event sequences a syn-
tax inspired to that of regular expressions so as to specify
irrelevant/unknown events, and repetitions (cf. (Costantini
2012)).

Definition 8 (Evolutionary LTL Expressions) Ler S¢vP
be a sequence of past events, and S” and J7 be se-
quences of events. Let T be a contextual A-ILTL formula
Op ¢ :: x. An Evolutionary LTL Expression w is of the
form SEvP . 1 0 ST i T where: (i) SEUP denotes
the sequence of relevant events which are supposed to have
happened, and in which order, for the rule to be checked;
i.e., these events act as preconditions: whenever one or
more of them happen in given order, T will be checked; (ii)
S7 denotes the events that are expected to happen in the
future without affecting 7; (iii) J7 denotes the events that
are expected not to happen in the future; i.e., whenever any
of them should happen, is not required to hold any longer,
as these are “breaking events”.

An Evolutionary LTL Expression can be evaluated w.r.t. a
state s; which includes among its components the history
of the agent, i.e., the list of past events perceived by the
agent. A history H satisfies an event sequence .S whenever
all events in .S occur in H, in the order specified by S itself.

Definition 9 An Evolutionary A-ILTL Expression w, of the
form specified in Definition 8: (1) holds in state s; whenever
(i) history H; satisfies SEVP and S” and does not include
any event in JY, and T holds or (ii) H; includes any event
occurring in JY (the expression is broken); (2) is violated
in state s; whenever H; satisfies S€'P and S” and does not
include any event in J I and T does not hold.

Operationally, an Evolutionary A-ILTL Expression can be
finally deemed to hold if either the critical state has been

reached and 7 holds, or an unwanted event has occurred. In-
stead, an expression can be deemed not to hold (or, as we
say, to be violated as far as it expresses a wished-for prop-
erty) whenever 7 is false at some point without the occur-
rence of breaking events.

The following is an example of Evolutionary A-ILTL Ex-
pression stating that, after withdrawing a sum at the cash
machine (P standing for ’past’ indicates a past event, occur-
ring at time T, in this case a past action), one is supposed
to have money in her wallet for at least one week, despite
everyday expenses, unless a robbery occurs.

withdrawalP: T :
ALWAYS(T, T + lyeer) have_cash
o minor,expenses*
s robbery
Whenever an Evolutionary A-ILTL expression is either
violated or broken, a reaction can be attempted aiming at
recovering a desirable or at least acceptable agent’s state.

Definition 10 An evolutionary LTL expression with repair
w” is of the form w|n ||n2 where w is an Evolutionary LTL
Expression adopted in language L, and n1,m2 are atoms of
L. n1 will be executed (according to L’s procedural seman-
tics) whenever w is violated, and ny will be executed when-
ever w is broken. n1 and 1y are called countermeasures.

In previous example, countermeasure 7; might imply ei-
ther withdrawing more money, or asking a friend for some
money, or cutting down expenses. 173 might imply reporting
to the police. Also in this case preferences may come into
play. For instance, one may prefer to withdraw again if she
is rich, or to ask a friend is she has urgent needs. In fact, sev-
eral preferences can be expressed at the same time. If several
actions are equally preferred, a feasible one will be nonde-
terministically selected. The overall expression will take the
form:

withdrawalP:T :
ALWAYS(T, T 4 lyeer) have_cash
11l MINOT_exTPenses*
i robbery
| withdrawalA > cut_expensesA :- rich
ask_friendA > cut_expensesA :- urgent_needs
|| report_to_police A
Evolutionary LTL expressions can be further enhanced by
introducing a third kind of counter-action, aimed at prevent-
ing a potentially breaking event from disrupting the wished-
for property. In the following example, having taken an ap-
pointment for a certain day and time D, one does not want
to be late. Normally, being punctual would be made impos-
sible by a bus strike, which is a potential breaking event for
the property. However, a third kind of counter-action may be
introduced aimed at trying to disable the potential breaking
property. In the example, it consists in either renting a car or
taking a taxi, according to which option is considered to be
more effective in terms of time.
appointmentP(D):T :
NEVER) late(D)
it bus_strike
|| alternative_transportation IN
{rent_car, tazi : quicker}

In previous example, another potential breaking property
might be an unexpected major expense, to which one might
for instance react by asking a relative for money. The formu-
lation becomes the following.

withdrawalP:T :
ALWAYS(T, T 4 lyeer) have_cash
111 MINOT_eTPenses*
i unexpected_major_expense
| withdrawalA > cut_expensesA :- rich
ask_friendA > cut_expensesA :- urgent_needs
||| ask_relative_for_moneyA

The modified formal definitions are easy to devise, though
we are forced to omit them here for lack of space.

Related Work and Concluding Remarks

In this paper, we have generalized our past work on A-ILTL
run-time constraints in logical agents. On the one hand we
have made them parametric with respect to the underlying
logic. On the other hand, we have devised a version of A-
ILTL constraints aimed at complex reactivity in Complex
Event Processing environments. The overall aim is that of
contributing to the construction of non-brittle adaptable log-
ical agents.

We may easily notice similarities between A-ILTL con-
straints and event-calculus formulations (Kowalski and Ser-
got 1986). Also, approaches based on abductive logic pro-
gramming such as, SCIFF (cf. (Montali et al. 2011) and the
references therein) allow one to model dynamically upcom-
ing events, and specify positive and negative expectations,
and the concepts of fulfilment and violation of expectations.
Reactive Event Calculus (REC) stems from SCIFF (Bra-
gaglia et al. 2012) and adds more flexibility by reacting to
new events by extending and revising previously computed
results. However, these approaches have been devised for
static checking or dynamic checking when performed by a
third party. Event sequences, the concepts of violated and
broken expressions, complex reaction patterns, and indepen-
dence of the underlying logic are however distinguished fea-
tures of the proposed approach. We drew inspiration from
Cohen and Levesque work on rational agency (cf., e.g., (Co-
hen and Levesque 1990)), thus our focus is not on observable
behavior to be confronted with expectations: rather, A-ILTL
rules are aimed at expressing inherent agent properties, and
at defining what can be done to enforce these properties. As
mentioned, we see a close relationship to the approach of
(Anderson and Perlis 2005).

We have been experimenting the approach in the context
of energy management in smart buildings (Caianiello et al.
2013). Such intelligent control must be dynamic by nature,
including real-time requirement as the building has its own
dynamical thermo-physical behavior and is immersed in a
dynamical environment where weather events change its en-
ergy footprint in function of time. The outcome of the ex-
periments is encouraging, in the sense that adopting agents
equipped with the proposed features allows for not only gen-
eral but also local (room-by-room or area-by-area) control of
energy saving according to user comfort requirements and
preferences.

References

Anderson, M. L., and Perlis, D. 2005. Logic, self-awareness
and self-improvement: the metacognitive loop and the prob-
lem of brittleness. J. Log. Comput. 15(1):21-40.

Apt, K. R., and Bol, R. 1994. Logic programming and nega-
tion: A survey. The Journal of Logic Programming 19-20:9—
71.

Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.

Brachman, R. J. 2006. (AA)AI more than the sum of its
parts. Al Magazine 27(4):19-34.

Bragaglia, S.; Chesani, F.; Mello, P.; Montali, M.; and Tor-
roni, P. 2012. Reactive event calculus for monitoring global
computing applications. In Artikis, A.; Craven, R.; Cicekli,
N. K.; Sadighi, B.; and Stathis, K., eds., Logic Programs,
Norms and Action - Essays in Honor of Marek J. Sergot on
the Occasion of His 60th Birthday, volume 7360 of Lecture
Notes in Computer Science, 123—146. Springer.

Caianiello, P.; Costantini, S.; Gasperis, G. D.; Florio, N.; and
Gobbo, F. 2013. Application of hybrid agents to smart en-
ergy management of a prosumer node. In Proc. of DCAI
2013, 10th International Symposium on Distributed Com-
puting and Artificial Intelligence, Advances in Intelligent
and Soft Computing. Springer. to appear.

Chandy, M. K.; Etzion, O.; and von Ammon, R. 2011.
10201 Executive Summary and Manifesto — Event Process-
ing. In Chandy, K. M.; Etzion, O.; and von Ammon, R., eds.,
Event Processing, number 10201 in Dagstuhl Seminar Pro-
ceedings. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

Cohen, P. R., and Levesque, H. J. 1990. Intention is choice
with commitment. Artif. Intell. 42(2-3):213-261.

Costantini, S., and De Gasperis, G. 2012. Complex reactiv-
ity with preferences in rule-based agents. In Bikakis, A., and
Giurca, A., eds., Rules on the Web: Research and Applica-
tions, RuleML 2012 - Europe, Montpellier, France, August
27-29, 2012. Proceedings, volume 6826 of Lecture Notes in
Computer Science, 167-181. Springer.

Costantini, S., and Formisano, A. 2009. Modeling prefer-
ences and conditional preferences on resource consumption
and production in ASP. Journal of of Algorithms in Cogni-
tion, Informatics and Logic 64(1).

Costantini, S., and Formisano, A. 2011. Weight constraints
with preferences in ASP. In Proceedings of the 11th Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR2011), Lecture Notes in Computer
Science. Springer.

Costantini, S., and Gasperis, G. D. 2013. Memory, ex-
perience and adaptation in logical agents. In Proc. of IS-
MIS 2013, International Symposium on Management Intel-
ligent Systems, Advances in Intelligent and Soft Computing.
Springer. to appear.

Costantini, S., and Tocchio, A. 2002. A logic programming
language for multi-agent systems. In Logics in Artificial In-
telligence, Proc. of the 8th Europ. Conf.,JELIA 2002, LNAI
2424. Springer-Verlag, Berlin.

Costantini, S., and Tocchio, A. 2004. The DALI logic pro-
gramming agent-oriented language. In Logics in Artificial
Intelligence, Proc. of the 9th European Conference, Jelia
2004, LNAI 3229. Springer-Verlag, Berlin.

Costantini, S., and Tocchio, A. 2006. About declarative
semantics of logic-based agent languages. In Baldoni, M.;
Endriss, U.; Omicini, A.; and Torroni, P., eds., Declarative
Agent Languages and Technologies III, Third International
Workshop, DALT 2005, Selected and Revised Papers, vol-
ume 3904 of LNAI. Springer. 106—123.

Costantini, S.; D’ Alessandro, S.; Lanti, D.; Tocchio, A.; and
al. 2012. DALI web site, download of the interpreter. Re-
leased: basic DALI features. For beta versions please ask the
authors.

Costantini, S.; Dell’ Acqua, P.; and Tocchio, A. 2007. Ex-
pressing preferences declaratively in logic-based agent lan-
guages. In Proc. of Commonsense’07, the 8th Interna-
tional Symposium on Logical Formalizations of Common-
sense Reasoning. AAAI Press. Event in honor of the 80th
birthday of John McCarthy.

Costantini, S. 2011. Answer set modules for logical agents.
In de Moor, O.; Gottlob, G.; Furche, T.; and Sellers, A., eds.,
Datalog Reloaded: First International Workshop, Datalog
2010, volume 6702 of LNCS. Springer. Revised selected
papers.

Costantini, S. 2012. Self-checking logical agents. In Proc. of
LA-NMR 2012, volume 911. CEUR Workshop Proceedings
(CEUR-WS.org). Invited paper.

Costantini, S. 2013a. The DALI agent-oriented
logic programming language: References. at URL
http://www.di.univaq.it/stefcost/info.htm.

Costantini, S. 2013b. Self-checking logical agents. In
Proc. of AAMAS 2013, twelfth Intern. Conf. on Autonomous
Agents and Multi-Agent Systems. Sheridan Communica-
tions. Extended Abstract, to appear.

Emerson, E. A. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence, vol. B. MIT Press.

Etzion, O. 2010. Event processing - past, present and fu-
ture. Proceedings of the VLDB Endowment, PVLDB Journal
3(2):1651-1652.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Logic Programming,
Proc. of the Fifth Joint Int. Conf. and Symposium, 1070—
1080. MIT Press.

Gelfond, M. 2007. Answer sets. In Handbook of Knowledge
Representation, Chapter 7. Elsevier.

Henzinger, T. A.; Manna, Z.; and Pnueli, A. 1992. Timed
transition systems. In de Bakker, J. W.; Huizing, C.;
de Roever, W. P.; and Rozenberg, G., eds., Real-Time: The-
ory in Practice, REX Workshop, Mook, The Netherlands,
June 3-7, 1991, Proceedings, volume 600 of Lecture Notes
in Computer Science, 226-251. Springer.

Kowalski, R., and Sergot, M. 1986. A logic-based calculus
of events. New Generation Computing 4:67-95.

Lifschitz, V. 1999. Answer set planning. In Proc. of the 16th
Intl. Conference on Logic Programming, 23-37.

Manna, Z., and Pnueli, A. 1984. Adequate proof princi-
ples for invariance and liveness properties of concurrent pro-
grams. Sci. Comput. Program. 4(3):257-289.

Marek, V. W., and Truszczyniski, M. 1999. Stable logic
programming - an alternative logic programming paradigm.
Springer. 375-398.

Montali, M.; Chesani, F.; Mello, P.; and Torroni, P. 2011.
Modeling and verifying business processes and choreogra-
phies through the abductive proof procedure sciff and its ex-
tensions. Intelligenza Artificiale, Intl. J. of the Italian Asso-
ciation AI*IA 5(1).

Paschke, A., and Kozlenkov, A. 2009. Rule-based event
processing and reaction rules. In RuleML, volume 5858 of
Lecture Notes in Computer Science, 53—66. Springer.

Paschke, A.; Vincent, P.; and Springer, F. 2011. Standards
for complex event processing and reaction rules. In Olken,
F.; Palmirani, M.; and Sottara, D., eds., RuleML America,
volume 7018 of Lecture Notes in Computer Science, 128—
139. Springer.

SOAR-Research-Group. 2010. SOAR: A
comparison with rule-based systems. URL:
http://sitemaker.umich.edu/soar/home.

Vincent, P. 2011. Event-driven rules: Experiences in cep.
In Olken, F.; Palmirani, M.; and Sottara, D., eds., RuleML
America, volume 7018 of Lecture Notes in Computer Sci-
ence, 11. Springer.

