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Abstract

A model of spatial relations between automobiles changing
over time needs to trade off expressivity, computational com-
plexity, type of measured data, and closeness to human cogni-
tion. We present a common sense theory for reasoning about
distances between cars based on two temporal distances be-
tween pairs of cars, net time gap and time to collision. We
give an axiomatization in the situation calculus which allows
reasoning about car-to-car relations and how they are affected
by time and acceleration. We also discuss experimental re-
sults in a plan recognition scenario.

Introduction
When modeling spatio-temporal relations of cars one needs
to walk a fine line between realism and a suitable level of ab-
straction. Since automobile driving is a physically complex
process, realistic models are often also complex, both math-
ematically and computationally (Helbing and Nagel 2004).
For some applications, however, common sense oriented
models seem more suitable, e.g., for plan recognition. The
goal of plan recognition is to infer from a pre-defined plan
library which plan an observed agent pursues. Simple mod-
els are desirable in this setting to keep the process of creating
the plan library manageable and its result clearer. Also, on-
line plan recognition requires fast reasoning in the model in
order to quickly process new information.

In (Schwering et al. 2012) we presented a model-based
approach to plan recognition. The plan library consists of
programs, whose execution is simulated. The result of this
simulation is compared to observations of the real world. In
the traffic domain this means that the simulated vehicles’
position etc. is compared to the real position. Thus we can
determine those programs from the plan library which match
the observed driving maneuver.

For lateral movement, lane markings act as landmarks by
which drivers orient themselves. When it comes to longi-
tudinal movement, there is no such global reference point.
Instead, this role is filled by the other dynamically moving
vehicles on the road. In this paper we present a model to
express this feature. Our theory is based on two temporal
distance measures to describe the longitudinal relation be-
tween two vehicles: The net time gap (NTG) between two
cars denotes the time that passes until one car has reached
the position of the other, i.e., it measures how close two cars

are. The time to collision (TTC) is the time it takes one car to
catch up with the other one, i.e., it measures how fast cars are
approaching one another. These temporal measures have the
advantage of being less dependent on cars’ velocities when
it comes to assessing the hazard potential of a situation. Ad-
ditionally they are relatively easy to measure in reality and
actually used in practice (Marsden, McDonald, and Brack-
stone 2001; Dagli, Brost, and Breuel 2002). We show that
from a chain of NTG and TTC measurements of adjacent
cars the NTG and TTC relations of all cars can be inferred.
This gives rise to a view of the entire traffic situation. We
also integrate the concepts of time and acceleration in this
model to account for the dynamics in the traffic domain.

Since, as we will see, it turns out to be useful to work with
actual quantitative measurements in traffic scenarios, purely
qualitative calculi are not suitable for our purposes. Calculi
like Allen’s Algebra (Allen 1983), the Point Algebra (Vi-
lain, Kautz, and Beek 1986), the Region Connected Calcu-
lus (RCC) (Randell, Cui, and Cohn 1992), or the Oriented
Point Algebra (OPRA) (Mossakowski and Moratz 2012) fo-
cus more on the representation of different constellations of
spatial or temporal relations, less on their temporal evolu-
tion. They provide no means to reason about closeness and
the rate at which it changes, i.e., the speed at which cars ap-
proach each other. (Clementini, Di Felice, and Hernández
1997) does consider distance, but it also lacks a concept of
time. In fast-paced scenarios like traffic, however, this tem-
poral evolution is of great importance. While the Qualita-
tive Trajectory Calculus (QTC) (Van de Weghe et al. 2006;
2005) has been applied to traffic scenarios, it seems to be
inappropriate to assess the hazard potential of traffic situa-
tions because it reduces the continuum to three values, −,
0, +, and thus loses a representation of time as needed for
fast-paced situations as they occur in traffic.

The rest of the paper is organized as follows. In the next
section we present a model for longitudinal reasoning using
the measures net time gap and time to collision. The subse-
quent section shows how we make use of this model for plan
recognition. In Section 4, we present experimental results in
this application. Then we conclude.

Model
Our model is based on two temporal distance measures to
describe the longitudinal relation between two vehicles: The
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ntg(b, c)>0 ∧ ntg(c, b)<0
b follows c

b c

ntg(b, c)>0 ∧ ntg(c, b)>0
b, c approach each other

b c

ntg(b, c)<0 ∧ ntg(c, b)>0
c follows b

b c

ntg(b, c)<0 ∧ ntg(c, b)<0
b, c move apart

Figure 1: The sign of NTG indicates the driving direction:
ntg(b, c) is positive iff b moves towards c’s position.

net time gap (NTG) between two cars b and c denotes the
time (usually in seconds) that passes until b has reached the
position at which c is right now. The time to collision (TTC)
denotes the time that passes until b has caught up with c.

First we define NTG and TTC in the context of a global
view. Then we show what can be inferred from NTG and
TTC alone without any global information. Let x(b) be the
global longitudinal position of a car b (i.e., the distance to
some imaginary starting line) and v(b) its longitudinal ve-
locity. Then NTG and TTC are determined by

ntg(b, c) = x(c)−x(b)
v(b) and ttc(b, c) = x(c)−x(b)

v(b)−v(c)

Intuitively NTG measures how close b is to c. The two-
second rule, a common guideline to keep a safe distance to
the vehicle in front,1 simply says to keep ntg(b, c) ≥ 2. Be-
sides the absolute value, the sign of NTG is interesting, be-
cause it tells us in which direction a car moves: ntg(b, c) > 0
means that b moves towards c’s current position, i.e., b will
be at c’s position in ntg(b, c) seconds. On the other hand
ntg(b, c) < 0 means b moves away from c’s position, i.e.,
b has been at c’s position −ntg(b, c) seconds ago. Figure 1
depicts the possible NTG relations of b and c.

In traffic not just the closeness and driving direction are
important, but also the rate at and direction in which close-
ness, i.e., the NTG, changes. This is captured by the TTC.
When it is positive, both cars are actually getting closer. Oth-
erwise the cars are diverging. These possible relations are
depicted in Figure 2. Thus NTG and TTC together provide
much information: they tell us the relative driving directions
of both cars and how this relation will evolve over time.

When v(b) = 0 or v(b) = v(c) then NTG and TTC are
undefined, respectively, due to division by zero. This makes
sense, because a still standing car will never reach another
car’s position, and two equally fast cars will never catch up.

In the rest of this section we will at first encode NTG and
TTC in logic. The following subsections show that NTG and
TTC are both symmetric and transitive when both NTG and
TTC are known. By symmetry we mean that the perspective
of NTG and TTC can be inverted. By transitivity we mean
that from measurements of adjacent cars b, c and c, d we
can compute the NTG and TTC of b and d. Then we show
how time and acceleration affect NTG and TTC. Finally we
present a situation calculus theory based on these results.

1http://en.wikipedia.org/wiki/Two-second rule
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ttc(b, c)> 0
b, c converge

b c

ttc(b, c)< 0
b, c diverge

Figure 2: The sign of TTC indicates whether b and c are
getting closer or diverging from another.

Let E denote the following set which axiomatizes our
model in the context of a global view:

E = {NTG(b, c, r) ≡ v(b) 6= 0 ∧ r = x(c)−x(b)
v(b) ,

TTC (b, c, r) ≡ v(b) 6= v(c) ∧ r = x(c)−x(b)
v(b)−v(c) ,

Axiomatization of real numbers}

Free variables are implicitly universally quantified except
when used in macro definitions. We use two sorts: car for
traffic participants and real for the real numbers. We shall
use b, c, d for variables of sort car , all other variables are
of sort real . NTG and TTC are of sort car × car × real
while x and v are of sort car → real . The axioms express
that NTG and TTC are partial functions, i.e., their result r is
uniquely determined by b and c if it is defined.

For brevity we often use a functional notation like
ntg(b, c). This notation is defined as follows: When an
atomic sentence P (t1, . . . , tn) or t1 = t2 for some predicate
symbol P and terms t1, . . . , tn mentions a term ntg(b, c),
this is a shorthand for (∃r)(NTG(b, c, r)∧P (t′1, . . . , t′n)) or
(∃r)(NTG(b, c, r) ∧ t′1 = t′2), respectively, where t′i results
from simultaneously replacing all occurrences of ntg(b, c)
in ti by a new variable r. Thus this expanded formula eval-
uates to False if NTG is not defined for b, c. Analogously
proceed for TTC and also for the real number division.

We will also use the following abbreviations to assert that
NTG and TTC are defined or non-zero, respectively:

κ(b, c)
def
= (∃r)NTG(b, c, r) ∧ (∃r)TTC (b, c, r) and

η(b, c)
def
= κ(b, c) ∧ ntg(b, c) 6= 0 ∧ ttc(b, c) 6= 0

Combined knowledge of NTG and TTC entails several
properties which do not hold if either of them is not known.
E.g., the speed ratio of two cars b, c can be determined using
only NTG and TTC without any further information:
Lemma 1

E |= η(b, c) ⊃ v(c)
v(b) = 1− ntg(b,c)

ttc(b,c)

Symmetry
In the following we show how to flip the perspective be-
tween two cars. That is, knowing ntg(b, c) and ttc(b, c) also
implies knowledge about ntg(c, b) and ttc(c, b).
Proposition 2 (Symmetry of NTG)

E |= η(b, c) ∧ ntg(b, c) 6= ttc(b, c) ⊃

ntg(c, b) =
−1

1− ntg(b,c)
ttc(b,c)

· ntg(b, c)



The condition ntg(b, c) 6= ttc(b, c) covers division by
zero in the consequent. It is violated if v(c) = 0.

Proposition 3 (Symmetry of TTC)

E |= κ(b, c) ⊃ ttc(c, b) = ttc(b, c)

The first result follows easily from Lemma 1, the second
follows directly from the definition of TTC.

Transitivity
Here we show that NTG and TTC are transitive. That is,
when we know ntg(b, c), ntg(c, d) and ttc(b, c), ttc(c, d)
we can compute ntg(b, d) and ttc(b, d).

Proposition 4 (Transitivity of NTG)

E |= η(b, c) ∧ κ(c, d) ⊃

ntg(b, d) = ntg(b, c) +
(
1− ntg(b,c)

ttc(b,c)

)
· ntg(c, d)

This can again be easily proven using Lemma 1.
Before showing transitivity of TTC we introduce the fol-

lowing lemma which helps to deal with relative velocities
v(b)− v(c). When the velocity of b (or c) changes by factor
q to q · v(b) (or q · v(c)), the new relative velocity can be
written as α · (v(b) − v(c)) for some α which involves no
functions other than NTG and TTC.

Lemma 5 (i) When b’s velocity changes by factor q, the rel-
ative velocity v(b)− v(c) changes to

E |= η(b, c) ⊃ q · v(b)− v(c) = g(b, c, q) ·
(
v(b)− v(c)

)
where g(b, c, q) def

= (q − 1) · ttc(b,c)
ntg(b,c) + 1

(ii) When c’s velocity changes by factor q, it is

E |= η(b, c) ⊃ v(b)− q · v(c) = h(b, c, q) ·
(
v(b)− v(c)

)
where h(b, c, q) def

= (1− q) · ttc(b,c)
ntg(b,c) + q

Proof. (i) With Lemma 1 we have:

E |= η(b, c) ∧ q 6= 0 ⊃ v(c)
q·v(b) =

1
q ·

v(c)
v(b) = 1

q −
1
q ·

ntg(b,c)
ttc(b,c)

E |= η(b, c) ∧ q 6= 0 ⊃ v(c)
q·v(b) = 1− g(b,c,q)

q · ntg(b,c)ttc(b,c)

This equation can be solved for g(b, c, q).
(ii) h(b, c, q) can be determined analogously.

From this lemma the transitivity of TTC follows:

Proposition 6 (Transitivity of TTC)

E |= η(b, c) ∧ η(c, d) ∧ ttc(b,c)
ntg(b,c) +

ttc(c,d)
ntg(c,d) 6= 1 ⊃

ttc(b, d) = λ1 · ttc(b, c) + λ2 · ttc(c, d)

where

λ1
def
= ttc(c,d)·ntg(b,c)

ntg(c,d)·ttc(b,c)+ttc(c,d)·ntg(b,c)−ntg(c,d)·ntg(b,c)

λ2
def
= ttc(b,c)·ntg(c,d)−ntg(b,c)·ntg(c,d)

ntg(b,c)·ttc(c,d)+ttc(b,c)·ntg(c,d)−ntg(b,c)·ntg(c,d)

b c d

ntg(c, b) = −2

ttc(c, b) = 6

ntg(c, d) = 2

ttc(c, d) = 12

b c d

Figure 3: From the NTG and TTC measurements depicted
in the top, we can infer the order and relative relations as
shown in the bottom.

With these results we can compute a fairly complete view
of the traffic situation from relatively little data. Consider
Figure 3, in which we have only measured NTG and TTC
between c and b and between c and d. In this scenario we
can compute ntg(b, c) = 1.5 and ttc(b, c) = 6 by symme-
try. By transitivity we get the relation between b and d:
ntg(b, d) = 3 and ttc(b, d) = 8. Also by symmetry we see
that ntg(d, c) = −2.4 and by transitivity ntg(d, b) = −4.8
and ttc(d, b) = 8. What does this tell us about the driving
situation? By comparing these values to Figures 1 and 2 we
see that b and c are driving in the same direction and that b is
approaching c. Similarly, c and d drive in the same direction
with c approaching d from behind. Thirdly, the same holds
for b and d. And we can even compute the speed ratios of all
pairs of cars by Lemma 1, e.g., the speed ratio of b and c is
1− −26 = 1 1

3 and the ratio of b and d is 1− −4.88 = 1 3
5 , i.e.,

b drives 33.3 % faster than c and 60 % faster than d.

Time
Now we investigate how NTG and TTC change over time.
After a time period t, TTC obviously reduces by t. The NTG
change depends on t and the speed ratio of b and c.

For this subsection we introduce two macros for the NTG
and TTC after a time period t:

tntg(b, c, t)
def
= x(c)+t·v(c)−(x(b)+t·v(b))

v(b)

tttc(b, c, t)
def
= x(c)+t·v(c)−(x(b)+t·v(b))

v(b)−v(c)

By simple arithmetic transformations and Lemma 1 we
get the following two results:

Proposition 7 (Temporal Evolution of NTG)

E |= η(b, c) ⊃ tntg(b, c, t) = ntg(b, c)− t · ntg(b,c)ttc(b,c)

Proposition 8 (Temporal Evolution of TTC)

E |= κ(b, c) ⊃ tttc(b, c, t) = ttc(b, c)− t

Acceleration
We now show how acceleration affects NTG and TTC. By
acceleration we mean a discontinuous change of a car’s ve-
locity, i.e., the effect of acceleration occurs instantaneously.
We chose this simplification for complexity reasons as we
would otherwise have to deal with quadratic equations.



For this subsection we introduce macros for the NTG and
TTC after an acceleration by q of b (subscript 1) and c (sub-
script 2):

antg1(b, c, q)
def
= x(c)−x(b)

q·v(b) attc1(b, c, q)
def
= x(c)−x(b)

q·v(b)−v(c)

antg2(b, c, q)
def
= x(c)−x(b)

v(b) attc2(b, c, q)
def
= x(c)−x(b)

v(b)−q·v(c)

The effect of acceleration on NTG is trivial:
Proposition 9 (Effect of acceleration on NTG)

E |= κ(b, c) ∧ q 6= 0 ⊃ antg1(b, c) =
1
q · ntg(b, c)

E |= κ(b, c) ⊃ antg2(b, c) = ntg(b, c)

The effect of acceleration on TTC follows directly from
Lemma 5:
Proposition 10 (Effect of acceleration on TTC)

E |= η(b, c) ∧ q 6= 1− ntg(b,c)
ttc(b,c) ⊃

attc1(b, c) =
1

(q − 1) · ttc(b,c)
ntg(b,c) + 1

· ttc(b, c)

E |= η(b, c) ∧ q 6= (1− ntg(b,c)
ttc(b,c) )

−1 ⊃

attc2(b, c) =
1

(1− q) · ttc(b,c)
ntg(b,c) + q

· ttc(b, c)

The constraints on q cover division by zero.

Basic Action Theory
With these results in hand we are ready to define a con-
cise action theory in the situation calculus (McCarthy 1963;
Reiter 2001). The situation calculus is a sorted first-order
language to reason about dynamic systems with actions
and change. While there are other action formalisms deal-
ing with continuous change like the event calculus (Shana-
han 1990) and Sandewall’s features and fluents approach
(Sandewall 1989), the situation calculus has the advantage
that it comes equipped with the well-established action pro-
gramming language Golog (Levesque et al. 1997), which
allows a very natural encoding of agent behavious such as
cars passing each other. In the situation calculus a dynamic
system is modeled in terms of a basic action theory (BAT)
which formalizes the basic relationships of primitive actions
and situation dependent predicates and functions, called flu-
ents. A situation is either the initial situation S0 or a term
do(a, s) where s is the preceding situation and a is an action
executed in s. The main components of a BAT are (1) a de-
scription of the initial situation S0, (2) precondition axioms
Poss(a, s) ≡ ρ that specify whether or not the primitive ac-
tion a is executable in situation s, and (3) successor state
axioms which define how fluents evolve in new situations.
A successor state axiom (SSA) for a fluent F (~x, s) has the
form F (~x, do(a, s)) ≡ γ+F (~x, a, s)∨F (~x, s)∧¬γ−F (~x, a, s)

where γ+F and γ−F describe the positive and negative effects
on fluent F , respectively.

We now define a BAT D that unifies the previous results
of this section in a single framework. From now on we as-
sume that NTG and TTC have an additional parameter s for

the current situation. Our action theory consists of two prim-
itive actions: accel(b, q) represents an acceleration of b by
factor q; wait(t) induces a lapse of time period t. Thus a sit-
uation do(accel(b, 0.5), do(wait(3), do(accel(b, 2), S0)))
represents that b discontinuously doubles its speed, drives
at this speed for 3 seconds, and then again halves its speed.

The initial situation S0 needs to axiomatize the initial traf-
fic scenario. A typical scenario might be that for each neigh-
boring pair of cars we have measurements of NTG and TTC.
By symmetry and transitivity a full view of the situation can
be computed as in Figure 3.

The preconditions for accel and wait are simply

Poss(accel(b, q), s) ≡ True,
Poss(wait(t), s) ≡ t ≥ 0

The SSA for NTG can use Propositions 7 and 9 to formal-
ize the effect of time and acceleration:

NTG(b, c, r, do(a, s)) ≡
(∃t) . a = wait(t) ∧ ttc(b, c, s) 6= 0 ∧

r = ntg(b, c, s)− t · ntg(b,c,s)ttc(b,c,s) ∨
(∃q) . a = accel(b, q) ∧ q 6= 0 ∧
r = 1

q · ntg(b, c, s) ∨
NTG(b, c, r, s) ∧ (∀t)a 6= wait(t) ∧
(∀q)a 6= accel(b, q)

The SSA for TTC similarly uses Propositions 8 and 10:

TTC (b, c, r, do(a, s)) ≡
(∃t) . a = wait(t) ∧ r = ttc(b, c, s)− t ∨
(∃q) . a = accel(b, q) ∧ ntg(b, c, s) 6= 0 ∧

q 6= 1− ntg(b,c,s)
ttc(b,c,s) ∧

r =
1

(q − 1) · ttc(b,c,s)
ntg(b,c,s) + 1

· ttc(b, c, s) ∨

(∃q) . a = accel(c, q) ∧ ntg(b, c, s) 6= 0 ∧

q 6=
(
1− ntg(b,c,s)

ttc(b,c,s)

)−1
∧

r =
1

(1− q) · ttc(b,c,s)
ntg(b,c,s) + q

· ttc(b, c, s) ∨

TTC (b, c, r, s) ∧ (∀t)a 6= wait(t) ∧
(∀q) . a 6= accel(b, q) ∧ a 6= accel(c, q)

Recall that the notation ntg(b, c, s) and ttc(b, c, s) is just
a shorthand for expressions involving NTG(b, c, r, s) and
TTC (b, c, r, s), respectively, as introduced at the beginning
of the section.

Note that when ntg(b, c, s) and/or ttc(b, c, s) are unde-
fined so are ntg(b, c, do(a, s)) and ttc(b, c, do(a, s)). Sens-
ing (Bacchus, Halpern, and Levesque 1999) could be used
to gain new NTG and TTC information in this case.

Additionally, NTG and TTC can become undefined due
to division by zero, e.g., ttc(b, c, do(accel(b, q), s)) is unde-
fined if q = 1− ntg(b,c,s)

ttc(b,c,s) or ntg(b, c, s) = 0. Why is that? In



the first case b accelerates to the same speed as c (Lemma 1)
and will therefore never catch up with c. In the second case
ntg(b, c, s) = 0 indicates that b and c are driving next to each
other (but not necessarily at the same speed). Intuitively one
might argue that ttc(b, c, do(accel(b, q), s)) = 0 should still
hold, because no time passed since s and thus the TTC must
remain the same. However, the further development of TTC
is not clear: b might have changed its velocity to c’s (which
we cannot detect because 1 − ntg(b,c,s)

ttc(b,c,s) involved a division
by zero), which means that b will remain next to c; thus even
future wait(t) actions should leave the TTC of b and c un-
changed at zero in this case!

Instead of considering all these special cases in the SSAs,
we can exploit transitivity at this point to avoid NTG and
TTC unnecessarily becoming undefined. For space reasons
we only sketch the idea. In the SSA for NTG we can ex-
tend the treatment of a = wait(t) by a case that covers
ttc(b, c, s) = 0. In that case we look for a third car d for
which we can compute the NTG and TTC of the pairs b, d
and d, c, respectively. Thus ntg(b, c, do(wait(t), s)) can be
determined by transitivity via d. Analogously the SSA for
TTC can be extended to cover the cases that ntg(b, c, s) = 0
for a = accel(b, q) and a = accel(c, q) by computing the
NTG and TTC with a third car d and then transitively com-
bining these values.

To conclude we elaborate on how the initial situation S0

should look like. While the SSAs of NTG and TTC directly
use Propositions 7, 8, 9, 10 to account for acceleration and
time, they do not explicitly enforce symmetry and transi-
tivity. These are in fact state constraints which should be
satisfied in any reachable situation. This can be shown by
induction on situations (Reiter 2001) to give the following
result:
Proposition 11 Let φ(s) be the conjunction of the symmetry
and transitivity Propositions 2, 3, 4, 6 with added situation
arguments. Furthermore let ψ(s) assert that NTG and TTC
represent partial functions. If these properties hold in S0,
they are preserved by the successor state axioms:

D |= φ(S0) ∧ ψ(S0) ∧ executable(s) ⊃ φ(s) ∧ ψ(s)

where executable(s) asserts that all action preconditions in
s are satisfied.

Typically, initially a chain of NTG and TTC measure-
ments for neighboring cars is known. An appropriate ini-
tial situation can be specified by listing these measurements
and adding φ(S0) and ψ(S0) for the symmetric and transi-
tive closure. The situation depicted in Figure 3 could thus be
specified by

DS0
= {ntg(C,B, S0) = −2, ttc(C,B, S0) = 6,

ntg(C,D, S0) = 2, ttc(C,D, S0) = 12,

φ(S0), ψ(S0)}

Of course this requires the measurements to be consistent
with the symmetry and transitivity laws, otherwise the initial
situation is inconsistent. E.g., if we had another measure-
ment ntg(B,C) = 1 in Figure 3 this would be inconsistent
with ntg(B,C) = 1.5 computed by symmetry.

Plan Recognition
In this section we sketch how this model can be employed
in a plan recognition setting. Our approach (Schwering et al.
2012) to plan recognition is as follows. First the domain is
modeled in terms of a situation calculus basic action theory
which basically defines the available primitive actions and
fluents. Then one defines a plan library which consists of
Golog (Levesque et al. 1997) programs. To perform a con-
crete plan recognition task, execution of these programs is
simulated. The effects in this simulation are compared to
the observations of the real world. If the observations and
the simulation are consistent, the respective program is con-
sidered a potential explanation of the agent’s action, i.e., a
recognized plan. Through concurrency we can account for
multiple agents acting in parallel and interacting with each
other in our simulation as in reality.

Executing a Golog program essentially means to build up
a situation term. The program may involve certain nonde-
terministic constructs which allow the interpreter to make a
choice on its own. Generally the interpreter will try to avoid
actions whose precondition is not satisfied in the current sit-
uation at which point the execution halts. In the plan recog-
nition application one seeks to explain as many observations
as possible, so the interpreter looks for an execution that
does best with respect to this criterion. For details on the
semantics of our Golog dialect we refer to (Schwering et al.
2012). At this point we just mention the following program-
ming constructs: Primitive actions a lead from situation s to
do(a, s) if Poss(a, s) holds. Test actions φ? are executable
only if φ holds in the current situation. δ1; δ2 represents se-
quential execution, δ1 ‖ δ2 stands for concurrency by inter-
leaving. Further nondeterministic constructs include choice
of argument (πv) δ(v) and iteration δ∗.

For the plan recognition task we have extended the BAT
D presented in the previous section by a simple notion of
lanes. Lanes are numbered consecutively, and each car b
drives on exactly one of the lanes, lane(b, s) = `. A car
b can instantaneously change lanes by executing an action
lc(b, `′) where `′ denotes a lane adjacent to `.2 The longi-
tudinal model consisting of NTG and TTC is independent
from this lateral model.

To deal with NTG and TTC in a more intuitive way
we have defined a few typical ranges. One such category
for NTG is close behind which stands for the NTG inter-
val [1, 2.5]. Thus b is considered close behind c if 1 ≤
ntg(b, c) ≤ 2.5 holds. Farther distances correspond to big-
ger intervals. Similarly we defined categories for TTC such
as contracting fast whose TTC interval is [0, 5]. We con-
sider an observation matched by our model when there is a
common category for all NTG and TTC values and all cars
are in the same lane in the simulation as in reality.

With this model it is easy to express a number of driving
maneuvers. The following follow(b, c) program expresses
that b is closely behind c and drives at the same speed as

2In (Schwering et al. 2012) we presented a more sophisticated
model of lateral movement which measures the oscillations of a
driver. We omit this here to keep the presentation simple.



c (it accelerates by v(c)/v(b), c.f. Lemma 1):

follow(b, c)
def
= (lane(b) = lane(c))?;

accel(b, 1− ntg(b,c)
ttc(b,c) );

(ntg(b, c) ∈ close behind)?

Another typical example is the passing maneuver:

overtake(b, c)
def
=

(lane(b) = lane(c))?;

(ntg(b, c) ∈ behind)?;(
lc(b, lane(b) + 1);

wait(until(ntg(b, c) ∈ in front));

lc(b, lane(b)− 1)

‖ ((πq) ((q ≥ 1)?; accel(b, q)))∗
)
;

(ntg(b, c) ∈ in front)?

Besides the initial and final tests this program consists of two
concurrent threads: the first takes care of the lane changing
and the actual passing, the second takes care of accelera-
tion. The first thread asserts that at some time between the
lane changes b needs to actually have passed c. This point
in time is determined by the expression until(ntg(b, c) ∈
in front). We do this by a simple search: as the effect of
time on NTG is linear, we can interpolate to find some rep-
resentative from in front . TTC is linear in time, too, so we
can proceed in the same way for TTC-based waiting condi-
tions. The second thread allows to approximate the real car’s
acceleration with a sequence of accelerations.

Similar programs can be written to express that one car
approaches the other or goes past a vehicle without any lane
change. Another program is imitate(b, c) which makes b to
copycat all actions of c. This could be useful to model con-
voys.

Evaluation
We have implemented the described model as part of a plan
recognition system in Haskell.3 We evaluated the system
with a driving simulation, TORCS,4 to recognize driving
maneuvers. Twice a second the driving simulation measures
the NTG and TTC of the cars on the road and transmits this
observation to the plan recognition system, which in turn
tries to match these observations with a program from the
plan library.

In our experiments the system reliably correctly classified
follow maneuvers, passing maneuvers without lane changes,
and passing maneuvers with lane changes, each with two
cars on the road. The various maneuvers took about 10 s to
20 s. The recognition was done online in real time.

A more complex test run involved three cars as depicted
in Figure 4: one is driving in the right lane rather slowly
(d), a second one is going to pass it on the left lane (c), and
a third car (b) comes from behind at excessive speed. This

3http://www.haskell.org/
4http://torcs.sourceforge.net/

b

c

d

Figure 4: While c passes d, b may choose between two ma-
neuvers to avoid a crash.

scenario is interesting from the driving safety point of view
because there are multiple possible outcomes: To avoid a
crash, b may brake strongly, swing out behind c and slowly
pass d. Alternatively it may try to pierce through the gap
between c and d, thus first passing c on the right lane and
then pass d. These scenarios can be modeled using variants
of the overtake program described above. In our tests the
driving scenario took about 20 s and the classification ran in
real time.

In our experiments the following issue required special
treatment. When in our model two cars drive at the same
speed like in the follow program, the TTC is obviously un-
defined due to division by zero. In the real world, however,
cars usually do not drive at the very same speed. Instead they
permanently balance their speeds so that they have the same
average speed over time. This translates to large TTCs. To
deal with this issue we introduced a category stable , which
applies when either the TTC is undefined or the relative ve-
locity of both cars differs by less than 2 %.

Compared to the naive global model we used in (Schwer-
ing et al. 2012), the model presented in this paper is much
more tolerant with regard to velocities. E.g., the follow pro-
gram asserts that b is closely behind c and lets b drive at the
same speed as c. When both b and c accelerate a bit in the
real world, the model is still consistent with the real world.
In our old model, however, both cars were represented as
points with absolute coordinates and absolute velocity. The
real world and the model were matched just by comparing
the absolute positions of the cars in reality and the model.
When both cars accelerate by, say, 1 m/s in this scenario,
after 10 s the positions in the model and the real world dif-
fer already by 10 m! For this reason we essentially had to
fix the velocities in all our experiments in (Schwering et al.
2012). With the new model, we had no trouble to express
and handle varying speeds.

Conclusion
In this paper we proposed a new model to represent and rea-
son about longitudinal distances between cars. By measur-
ing relative distances in time instead of spatially this model
takes after the human cognition in traffic. These temporal
measures are more independent of the pace than spatial mea-
sures. Our model exclusively relies on relative data and no
global information at all, which makes it realistic for real
world applications. From this relative information it still
provides a fairly complete view of the traffic situation. We
also integrated the concepts of continuous time and acceler-
ation in order to account for the high dynamics of the fast-



paced traffic domain.
We plan to experiment with this model in larger-scale

traffic simulations to exploit the transitivity more explicitly.
We also aim to integrate sensing and knowledge (Bacchus,
Halpern, and Levesque 1999) into the model and plan recog-
nition system to deal with incomplete knowledge and newly
appearing cars. Another open problem is how to deal with
measuring inaccuracies of real applications and the result-
ing inconsistencies with symmetry and transitivity.
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