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Abstract

Argumentation has played a significant role in understand-
ing and unifying under a common framework different forms
of defeasible reasoning in AI. Argumentation is also close to
the original inception of logic as a framework for formalizing
human argumentation and debate. In this context, the pur-
pose of this paper is twofold: to draw a formal connection be-
tween argumentation and classical reasoning (in the form of
Propositional Logic) and link this to support defeasible, Non-
Monotonic Reasoning in AI. To this effect, we propose Argu-
mentation Logic and show properties and extensions thereof.

Introduction
Over the past two decades argumentation has played a sig-
nificant role in understanding and unifying under a common
framework defeasible Non-Monotonic Reasoning (NMR)
in AI (Lin and Shoham 1989; Dung 1995; Bondarenko
et al. 1997). Moreover, a foundational role for argumen-
tation has emerged in the context of problems requiring
human-like commonsense reasoning, e.g. as found in the
area of open and dynamic multi-agent systems to support
context-dependent decision making, negotiation and dia-
logue between agents (e.g. see (Kakas and Moraitis 2003;
Dung, Thang, and Toni 2008)). This foundational role of ar-
gumentation points back to the original inception of logic as
a framework for formalizing human argumentation.

This paper reexamines the foundations of classical logical
reasoning from an argumentation perspective, by formulat-
ing a new logic of arguments, called Argumentation Logic
(AL), and showing how this relates to Propositional Logic.
AL is formulated by bringing together argumentation theory
from AI and the syllogistic view of logic in Natural Deduc-
tion (ND). Its definition rests on a re-interpretation of Re-
ductio ad Absurdum (RA) through a suitable argumentation
semantics. One consequence of this is that in AL the impli-
cation connective behaves like a default rule that still allows
a form of contrapositive reasoning. The reasoning in AL is
such that the ex-falso rule where everything can be derived
from an inconsistent theory does not apply and hence an in-
consistent part of a theory does not necessarily trivialize the
whole reasoning with that theory.

The main motivation for studying this argumentation per-
spective on logical reasoning is to examine how its use to

bring together classical reasoning and non-monotonic com-
monsense reasoning into a single unified framework. The
paper presents a preliminary investigation into building such
a NMR framework based on AL that integrates into the sin-
gle representation framework of AL classical reasoning, as
in Propositional Logic including forms of Reductio ad Ab-
surdum, with defeasible reasoning. In particular, we study,
in the context of examples, the possible use of preferences
over sentences of an AL theory to capture NMR defeasible
reasoning and naturally combine this with the classical rea-
soning of AL. Our vision is for all forms of reasoning to be
captured in the argumentation reasoning of AL and its ex-
tensions with preferences.

Preliminaries on Natural Deduction
Let L be a Propositional Logic language and ` denote the
provability relation of Natural Deduction (ND) in Proposi-
tional Logic.1 Throughout the paper, theories and sentences
will always refer to theories and sentences wrt L. We as-
sume that ⊥ stands for φ ∧ ¬φ, for any φ ∈ L.

Definition 1 Let T be a theory and φ a sentence. A direct
derivation for φ (from T ) is a ND derivation of φ (from T )
that does not contain any application of RA. If there is a
direct derivation for φ (from T ) we say that φ is directly
derived (or derived modulo RA) from T , denoted T`MRAφ.

Example 1 Let T1 = {α → (β → γ)}. The following is a
direct derivation for α ∧ β → γ (from T1):

dα ∧ β hypothesis
α ∧E
α→ (β → γ) from T
β → γ → E
β ∧E
γc → E

α ∧ β → γ → I
Thus, T1 `MRA α∧β → γ (and, trivially, T1 ` α∧β → γ).
Consider now T2 = {¬(α ∨ β)}. The following

dα hypothesis
α ∨ β ∨I
¬(α ∨ β) from T
⊥c ∧I

¬α RA

1See the appendix for a review of the ND rules that we use.



is a ND derivation of ¬α that is not direct. Since there is no
direct derivation of ¬α, T2 ` ¬α but T2 6`MRA ¬α.

Definition 2 A theory T is classically inconsistent iff T `
⊥. A theory T is directly inconsistent iff T `MRA ⊥. A
theory T is (classically or directly) consistent iff it is not
(classically or directly, respectively) inconsistent.

Trivially, if a theory is classically consistent then it is di-
rectly consistent. However, a directly consistent theory may
be classically inconsistent, as the following example shows.

Example 2 Consider T1 = {α → ⊥,¬α → ⊥}. T1 is
classically inconsistent, since T1 ` ⊥ as follows:

dα hypothesis
α→ ⊥ from T
⊥c → E

¬α RA
d¬α hypothesis
¬α→ ⊥ from T
⊥c → E

α RA
⊥ ∧I

However, T1 is directly consistent, since T1 6`MRA ⊥. Con-
sider instead T2 = {α,¬α}. T2 is classically and directly
inconsistent, since T2 `MRA ⊥, as follows:

α from T
¬α from T
⊥ ∧I

We will use a special kind of ND derivations, that we call
Reduction ad Absurdum Natural Deduction (RAND). These
are ND derivations with an outermost application of RA:

Definition 3 A RAND derivation of ¬φ ∈ L from T is a
ND derivation of ¬φ from T of the form

dφ hypothesis
...

...

⊥c
...

¬φ RA
A sub-derivation (of some ψ ∈ L) of a derivation d is a
RAND sub-derivation of d iff it is a RAND derivation.

The ND derivation of ¬α given T2 in example 1 is a RAND
derivation. Also, given T1 in example 2, the sub-derivations2

dα d¬α
α→ ⊥ ¬α→ ⊥
⊥c ⊥c

¬α α
of the derivation (d) of ⊥ are RAND sub-derivations (of d).

Argumentation Logic Frameworks
Given a propositional theory we will define a corresponding
argumentation framework as follows.

Definition 4 The argumentation logic (AL) framework cor-
responding to a theory T is the triple 〈ArgsT , AttT , DefT 〉
defined as follows:

2If clear from the context, we omit to give the ND rules used.

• ArgsT = {T ∪ Σ|Σ ⊆ L} is the set of all extensions of
T by sets of sentences in L;

• given a, b ∈ ArgsT , with a = T ∪ ∆, b = T ∪ Γ, such
that ∆ 6= {}, (b, a) ∈ AttT iff a ∪ b `MRA ⊥;

• given a, d ∈ ArgsT , with a = T ∪∆, (d, a) ∈ DefT iff
1. d = T ∪{¬φ} (d = T ∪{φ}) for some sentence φ ∈ ∆

(respectively ¬φ ∈ ∆), or
2. d = T ∪ {} and a `MRA ⊥.

In the remainder, b attacks a (wrt T ) stands for (b, a) ∈ AttT
and d defends or is a defence against a (wrt T ) stands for
(d, a) ∈ DefT .

Note also that, since T is fixed, we will often equate argu-
ments T ∪Σ to sets of sentences Σ. So, for example, we will
refer to T ∪ {} = T as the empty argument. Similarly, we
will often equate a defence to a set of sentences. In particu-
lar, when d = T ∪D defends/is a defence against a = T ∪∆
we will say that D defends/is a defence against ∆ (wrt T ).

The attack relation between arguments is defined in terms
of a direct derivation of inconsistency. Note that, trivially,
for a = T∪∆, b = T∪Γ, (b, a) ∈ AttT iff T∪∆∪Γ `MRA

⊥. The following example illustrates our notion of attack:

Example 3 Given T1 = {α → (β → γ)} in example 1,
{α,β} attacks {¬γ} (and vice-versa), {α,¬γ} attacks {β}
(and vice-versa), {α,¬α} attacks {γ} (and vice-versa) as
well as any non-empty set of sentences (and vice-versa).

Note that the attack relationship is symmetric except for
the case of the empty argument. Indeed, for a, b both non-
empty, it is always the case that a attacks b iff b attacks a.
However, the empty argument cannot be attacked by any
argument (as the attacked argument is required to be non-
empty), but the empty argument can attack an argument. For
example, given T2 = {α,¬α} in example 2, {} attacks {α}
and {} attacks {β} (for any β ∈ L), since T `MRA ⊥. Fi-
nally, note that our notion of attack includes the special case
of attack between a sentence and its negation, since, for any
theory T , {φ} attacks {¬φ} (and vice-versa), for any φ ∈ L.

The notion of defence is a subset of the attack relation.
In the first case of the definition we defend against an argu-
ment by adopting the complement3 of some sentence in the
argument, whereas in the second case we defend against any
directly inconsistent set using the empty argument. Then, in
example 3, {¬α} defends against the attack {α, β} and {}
defends against the (directly inconsistent) attack {α,¬α}.
Note that the empty argument cannot be defended against if
T is directly consistent. Finally, note that when T is directly
inconsistent the attack and defence relationships trivialise,
in the sense that any two non-empty arguments attack each
other, the empty argument attacks any argument, and any
argument can be defended against by the empty argument.

Argumentation Logic
In this section we assume that T is directly consistent.

3The complement of a sentence φ is ¬φ and the complement of
a sentence ¬φ is φ.



As conventional in argumentation, we define a notion of
acceptability of sets of arguments to determine which con-
clusions can be dialectically justified (or not) from a given
theory. Our definition of acceptability and non-acceptability
is formalised in terms of the least fix point of (mono-
tonic) operators on the cartesian product of the set of argu-
ments/sentences in L, as follows:

Definition 5 Let 〈ArgsT , AttT , DefT 〉 be the AL frame-
work corresponding to a directly consistent theory T , and
R the set of binary relations over ArgsT .

• The acceptability operator AT :R→R is defined as fol-
lows: for any acc ∈ R and a, a0 ∈ ArgsT :
(a, a0) ∈ AT (acc) iff
– a ⊆ a0, or
– for any b ∈ ArgsT such that b attacks a wrt T ,
∗ b 6⊆ a0 ∪ a, and
∗ there exists d ∈ ArgsT that defends against b wrt T

such that (d, a0 ∪ a) ∈ acc.
• The non-acceptability operator NT : R → R is defined

as follows: for any nacc ∈ R and a, a0 ∈ ArgsT :
(a, a0) ∈ NT (nacc) iff
– a 6⊆ a0, and
– there exists b ∈ ArgsT such that b attacks a wrt T and
∗ b ⊆ a0 ∪ a, or
∗ for any d ∈ ArgsT that defends against b wrt T ,

(d, a0 ∪ a) ∈ nacc.
TheseAT andNT operators are monotonic wrt set inclusion
and hence their repeated application starting from the empty
binary relation will have a least fixed point.

Definition 6 ACCT and NACCT denote the least fixed
points of AT and NT respectively. We say that a is accept-
able wrt a0 in T iff ACCT (a, a0), and a is not acceptable
wrt a0 in T iff NACCT (a, a0).

Thus, given the AL framework 〈ArgsT , AttT , DefT 〉 (for
T directly consistent) and a, a0 ∈ ArgsT :
• ACCT (a, a0), iff

– a ⊆ a0, or
– for all b ∈ ArgsT such that b attacks a:
∗ b 6⊆ a0 ∪ a, and
∗ there exists d ∈ ArgsT such that d defends against b

and ACCT (d, a0 ∪ a);
• NACCT (a, a0), iff

– a 6⊆ a0 and
– there exists b ∈ ArgsT such that b attacks a and
∗ b ⊆ a0 ∪ a, or
∗ for all d ∈ ArgsT such that d defends against b it

holds that NACCT (d, a0 ∪ a).

We will often equate the (non-)acceptability of an argument
T ∪∆ wrt an argument T ∪∆0 to the (non-)acceptability of
the set of sentences ∆ wrt the set of sentences ∆0.

Note that non-acceptability, NACCT (a, a0), is the
same as the classical negation of ACCT (a, a0), i.e.

{¬β} {α}

{}
(since T∪{¬β}`MRA⊥)

OO

{β}
(since T∪{α}∪{β}`MRA⊥)
OO

{¬β}

KS

{}
(since T∪{¬β}`MRA⊥)
OO

Figure 1: Illustration of NACCT ({¬β}, {}) (left) and
NACCT ({α}, {}) (right), for example 4.

NACCT (a, a0) = ¬ACCT (a, a0). We will use these two
versions of non-acceptability interchangeably.

Note that the empty argument is always acceptable, wrt
any other argument. Note also that the “canonical” attack of
a sentence on its complement (i.e. of T ∪ {φ} on T ∪ {¬φ}
and vice-versa) does not affect the acceptability relation as
it can always be defended against by this complement itself.

The following examples illustrate non-acceptability.

Example 4 Let T ={α∧ β→⊥,¬β→⊥}. T is classically
and directly consistent, T ∪ {¬β} is classically and directly
inconsistent, and T ∪ {α} is classically inconsistent but di-
rectly consistent. It is easy to see that NACCT ({¬β}, {})
holds, as illustrated in figure 1 (left)4, since {¬β} 6⊆ {}, b =
{} attacks {¬β} and {} ⊆ {¬β}. Also, NACCT ({α}, {})
holds, as illustrated in figure 1 (right). Indeed:

• since {α} 6⊆ {}, b = {β} attacks {α} and {¬β} is the
only defence against b, to prove that NACCT ({α}, {})
it suffices to prove that NACCT ({¬β}, {α});

• since {¬β} 6⊆ {α}, b = {} attacks {¬β} and {} ⊆
{α,¬β}, NACCT ({¬β}, {α}) holds as required.

Note that if an argument a is attacked by the empty argu-
ment, then it is acceptable wrt any a0 iff a ⊆ a0, since there
is no defence against the empty argument. This observation
is used in the following example.

Example 5 Given T = T1 = {α → ⊥,¬α → ⊥} in ex-
ample 2, NACCT ({α}, {}) and NACCT ({¬α}, {}) both
hold. Indeed, for NACCT ({α}, {}), {α} is attacked by {}.
The following example shows a case of non-acceptability
making use of a non-empty attack for the base case.

Example 6 Let T = {α ∧ ¬β → ⊥, β ∧ γ → ⊥, α ∧ β ∧
¬γ → ⊥}. T is classically (and directly) consistent, and
T ∪ {α} is classically inconsistent but directly consistent.
NACCT ({α}, {}) holds, as illustrated in figure 2. Indeed:

• since {α} 6⊆ {}, b = {¬β} attacks {α} and {β} is the
only defence against b, to prove that NACCT ({α}, {})
it suffices to prove that NACCT ({β}, {α});

• since {β} 6⊆ {α}, b′ = {γ} attacks {β} and {¬γ} is the
only defence against b′, to prove thatNACCT ({β}, {α})
it suffices to prove that NACCT ({¬γ}, {α, β});

4Here and throughout the paper we adopt the following graphi-
cal convention: ↑ denotes an attack and ⇑ denotes a defence.



{α}

{¬β}
(since T∪{α}∪{¬β}`MRA⊥)
OO

{β}

KS

{γ}
(since T∪{β}∪{γ}`MRA⊥)
OO

{¬γ}

KS

{α, β}
(since T∪{α,β}∪{¬γ}`MRA⊥)
OO

Figure 2: Illustration of NACCT ({α}, {}) for example 6.

{¬(β ∨ ¬β)}

{¬β}

OO

{β}

KS

{¬(β ∨ ¬β)}

OO

Figure 3: Illustration of NACCT ({¬(β ∨¬β)}, {}) for ex-
ample 7.

• since {¬γ} 6⊆ {α, β}, b′′ = {α, β} attacks {¬γ} and
b′′ ⊆ {α, β,¬γ}, NACCT ({¬γ}, {α, β}) holds and so
NACCT ({β}, {α}) and NACCT ({α}, {}) both hold.

The following example illustrates non-acceptability in the
case of an empty (and thus classically consistent) theory.

Example 7 For T ={}, NACCT ({¬(β∨¬β)}, {}) holds,
as illustrated in figure 3. Also, trivially, NACCT ({β ∧
¬β}, {}) holds, since it is attacked by the empty argument.

A novel, alternative notion of entailment can be defined for
theories that are directly consistent in terms of the (non-) ac-
ceptability semantics for AL frameworks, as follows:

Definition 7 Let T be a directly consistent theory and φ ∈
L. Then φ is AL-entailed by T (denoted T |=AL φ) iff
ACCT ({φ}, {}) and NACCT ({¬φ}, {}).

This is motivated by the argumentation perspective, where
an argument is held if it can be successfully defended and it
cannot be successfully objected against.

In the remainder of the paper we will study properties of
|=AL and discuss extensions thereof to support NMR.

Basic Properties
The following result gives a core property of the notion of
AL-entailment wrt the notion of direct derivation in Propo-
sitional Logic, for directly consistent theories.

Proposition 1 Let T be a directly consistent theory and φ ∈
L such that T `MRA φ. Then T |=AL φ.

dα dα
d¬β dβ
⊥c c(α)

¬¬β α ∧ β
β ⊥c
α ∧ β ¬β
⊥c ⊥c

¬α ¬α

Figure 4: Two RAND derivations of ¬α in example 4: d1
(left) and d2 (right).

Proof: Let a = T ∪ ∆ be any attack against {φ},
i.e. T ∪ {φ} ∪ ∆ `MRA ⊥. Since T `MRA φ then
T ∪ ∆ `MRA ⊥. Since T is directly consistent, ∆ 6= {}.
Hence any such a can be defended against by the empty
argument. Since ACCT ({},Σ), for any Σ ⊆ L, then
ACCT ({φ}, {}) holds. Moreover, since T `MRA φ,
necessarily T ∪{¬φ} `MRA ⊥. Hence the empty argument
attacks {¬φ} and thus NACCT ({¬φ}, {}) holds. QED

The following theorem shows (one half of) the link of
AL with Propositional Logic by showing how the RA rule,
deleted from the ND proof system within `MRA, can be re-
covered back through the notion of non-acceptability.5

Theorem 1 Let T be a directly consistent theory and φ ∈
L. If NACCT ({φ}, {}) holds then there exists a RAND
derivation of ¬φ from T .6

For example, the RAND derivation corresponding to the
proof of NACCT ({α}, {}) in figure 1 is d1 in figure 4.7
Here, the inner RAND derivation in d1 corresponds to the
non-acceptability of the defence {¬β} against the attack
{β} against {α}. Derivation d2 in figure 1 is an alternative
RAND of ¬α, but this cannot be obtained from any proof of
NACCT ({α}, {}), because there is a defence against the
attack {β} given by the empty set (in other words, d2 does
not identify a useful attack, that cannot be defenced against,
for proving non-acceptability).

AL for Propositional Logic
The following result gives a core property of the notion of
non-acceptability for classically consistent theories.

Proposition 2 Let T be classically consistent and φ ∈ L. If
NACCT ({¬φ}, {}) holds then ACCT ({φ}, {}) holds.

Proof: By theorem 1, since NACCT ({¬φ}, {}), then
T ` φ. Suppose, by contradiction, that ACCT ({φ}, {})

5The other half of this result shows how (under some con-
ditions) a RAND derivation of ¬φ implies NACCT ({φ}, {}),
proven in (Kakas, Toni, and Mancarella 2012).

6The proof of this theorem is included for completeness of pre-
sentation and for inspection by the reviewers in the appendix.

7Here and elsewhere in the paper, c(φ), for any φ ∈ L, indi-
cates that φ is the hypothesis of an ancestor sub-derivation copied
within the current sub-derivation.



does not hold. Then NACCT ({φ}, {}) holds (since
NACCT ({φ}, {})=¬ACCT ({φ}, {})) and by theorem 1
there is a RAND derivation of ¬φ from T and thus T ` ¬φ.
This implies that T is classically inconsistent: contradiction.
Hence ACCT ({φ}, {}) holds. QED

Thus, in Propositional Logic, trivially AL-entailment
reduces to the notion on non-acceptability:

Corollary 1 Let T be a classically consistent theory and
φ ∈ L. Then T |=AL φ iff NACCT ({¬φ}, {}).

The following property sanctions that AL-entailment im-
plies classical derivability:

Corollary 2 Let T be a classically consistent theory and
φ ∈ L. If T |=AL φ then T ` φ.

Proof: If NACCT ({¬φ}, {}), then, by theorem 1, there is
a RAND derivation of ¬¬φ from T and thus T ` φ. QED

This corollary gives that consequences of a classically
consistent theory under |=AL are classical consequences
too. Proposition 1 sanctions that direct consequences are
not lost by |=AL. However, in general not all classical
consequences are retrieved by |=AL, namely the converse of
corollary 2 does not hold, as the following example shows.

Example 8 Let T = {¬α}. We show that T 6|=AL α → β
by showing that NACCT ({¬(α → β)}, {}) does not hold.
A standard ND derivation of α→ β from T is:

dα
d¬β
c(α)
¬α from T
⊥c

¬¬β RA
βc ¬E

α→ β → I

This does not help with determining NACCT ({¬(α →
β)},{}). This is related to the fact that the inconsistency
in the inner RAND derivation of ¬¬β is derived without the
need of the hypothesis, ¬β, of this RAND derivation. In
general, any RAND derivation of ¬¬(α → β)) (and hence
of α → β) from this theory, T , contains such a RAND
sub-derivation relying on the inconsistency of the copy of
α from a (→I) sub-derivation, with ¬α from T . This means
that NACCT ({¬(α → β)}, {}) cannot hold, since, oth-
erwise, by theorem 1, we would have a RAND derivation
of ¬¬(α → β) without such a sub-derivation. This is be-
cause by construction of the corresponding RAND deriva-
tion given by theorem 1 the existence of such a RAND sub-
derivation would violate the non-acceptability of some de-
fence in the assumed non-acceptability of ¬(α→ β).

This example shows, in particular, that implication is not
material implication under |=AL.

AL for Non-Monotonic Reasoning-Discussion
Here we present a first investigation on how AL can be used
as a basis for NMR unifying classical and defeasible reason-
ing, in the context of the well known tweety example. Our

examination is based on the (expected) need to extend AL
with preferences and the observation that when a theory is
(directly) inconsistent we have the possibility to reason with
its sub-theories, considering these as arguments that support
their conclusions under AL. For the illustration we use the
following (abbreviations of) sentences:
φbf = [bird(tweety)→ fly(tweety)]
φp¬f = [penguin(tweety)→ ¬fly(tweety)]
φpb = [penguin(tweety)→ bird(tweety)]
φ¬f = [¬fly(tweety)] φp = [penguin(tweety)]
φ¬b¬p = [¬bird(tweety)→ ¬penguin(tweety)]

Example 9 Let T = {φbf ,φpb,φ¬f} (T is classically con-
sistent). T|=AL¬bird(tweety) as {} attacks {bird(tweety)}
and thus NACCT ({bird(tweety)}, {}). Similarly, T |=AL

¬penguin(tweety). We believe that, in absence of other in-
formation, these conclusions are legitimate and desirable.

Note that AL does not distinguish default rules and facts and
it supports contrapositive reasoning with the single form of
implication it allows. In example 9, default logic (Reiter
1980) would derive the same conclusions only by labelling
T as facts, but would not derive either conclusion if the first
sentence were labelled as a default rule, as conventional.

Example 10 Let T = {φbf , φpb, φ¬f , φp¬f} (T classically
consistent, obtained by adding φp¬f to T in example 9).
T |=AL ¬bird(tweety) and T |=AL ¬penguin(tweety),
as in example 9. This is counter-intuitive, as it disregards
the newly added sentence and the alternative possibility for
¬fly(tweety) it supports, namely penguin(tweety).

By comparison, default logic with the first and last sentences
in T labelled as default rules (as conventional) would (scep-
tically) derive no conclusion as to whether tweety is (or not)
a bird or penguin. Arguably, this is too sceptical a behaviour.

Note that we have the same counter-intuitive be-
haviour of deriving ¬penguin(tweety) when the sentence
¬fly(tweety) is deleted from the theory of example 10. In
order to accommodate within AL the intuitive kind of rea-
soning pointed out for these examples, we can extend AL
with priorities over sentences, so that, in particular, excep-
tions may override rules, in the spirit of prioritised default
logic (Brewka 1994; Brewka and Eiter 2000) and other ap-
proaches to supporting reasoning with priorities (Delgrande
et al. 2004). In our illustration, these priorities may be drawn
from the partial order φ¬f , φp, φpb, φ¬b¬p > φp¬f > φbf .
The challenge is to incorporate these priorities without im-
posing a separation amongst sentences (as done instead in
prioritised and standard default logic) and without impos-
ing a specific structure on the defeasible knowledge (the de-
fault rules) so as to achieve, e.g., the behaviour of AL in
example 9. In example 10, the given priorities may be used
to identify the sub-theory {φpb, φ¬f , φp¬f} as the strongest
and thus entail penguin(tweety).

By introducing priorities we can also use preference-
based argumentation, as in e.g. (Kakas and Moraitis 2003;
Modgil and Prakken 2012), to distinguish between strengths
of AL-entailment from sub-theories, and, in particular, al-
low for stronger sub-theories to dominate, as illustrated by
the following example:



Example 11 Let T = {φbf , φp, φ¬f , φ¬b¬p} (T is directly
but not classically consistent). Then, correctly, in absence
of other information, T 6|=AL bird(tweety) and T 6|=AL

¬bird(tweety). The sub-theories T1 ={φbf , φ¬f} and T2 =
{φp, φ¬b¬p} AL-entail ¬bird(tweety) and bird(tweety)
respectively and hence dispute each other. If we now take
into account φ¬b¬p > φbf , then, under a preference-based
argumentation approach, T2 would dominate T1 and thus T
would correctly entail bird(tweety).

The core technical challenge of using priorities over
sentences is to understand how these could influence the
reasoning by contradiction afforded by RA in AL. In
our illustrative setting we want the priorities (especially
φp¬f > φbf ) to restrict the application of RA. There
are other cases, however, where RA gives intuitive results
and should not be restricted. For example, from the the-
ory {bird(tweety), φpb, φp¬f , φbf} with φpb > φp¬f >
φbf we expect that ¬penguin(tweety) is entailed since
fly(tweety) is an intuitive default conclusion of this the-
ory and then, by RA, penguin(tweety) cannot be entailed
(as otherwise through the stronger sentence of φp¬f , the
sentence ¬fly(tweety) would follow). Similarly, given the
theory {fly(tweety), φpb, φp¬f , φbf} with φpb > φp¬f >
φbf , we expect that ¬penguin(tweety) is entailed as
penguin(tweety) would give ¬fly(tweety) due to the
higher strength of φp¬f . To accommodate such cases it may
be necessary to use the priority information more tightly
within the definition of AL, i.e. within the definiton of (non-
)acceptability.

Related Work
AL is based on a notion of acceptability of arguments which
is in the same spirit as that in (Dung, Kakas, and Mancar-
ella 1992; Kakas, Mancarella, and Dung 1994) for capturing
the semantics of negation as failure in Logic Programming.
These notions of acceptability are global in the sense that ac-
ceptable and non-acceptable arguments are all defined at the
same time. This view has also recently been taken in (Cam-
inada and Gabbay 2009; Wu and Caminada 2010) where the
argumentation semantics is defined through the notion of a
global labelling of arguments as IN, OUT or UNDECIDED.

The link of argumentation to NMR has been the topic of
extensive study for many years. Most of these studies either
separate in the language the classical reasoning from the de-
feasible part of the theory (e.g. in Default Logic) or restrict
the classical reasoning (e.g. in LP with NAF) or indeed as
in the case of circumscription (McCarthy 1980) the theory
is that of classical logic but a complex prescription of model
selection is imposed on top of the classical reasoning.

Recently, (Besnard and Hunter 2008) proposed an argu-
mentation framework based upon classical logic with the
aim (that we share) to use argumentation to reason with pos-
sibly inconsistent classical theories, beyond the realms of
classical logic. In their approach, arguments are defined in
terms of sub-theories of a given (typically inconsistent) the-
ory and they have minimal and consistent supports (wrt the
full classical consequence relation). Attacks are defined in
terms of a notion of canonical undercut that relies on argu-

ments for the negation of the support of attacked argument.
Further, the evaluation of arguments is given through a re-
lated tree structure of defeated or undefeated nodes.

Other works that aim for a tighter link between classical
and defeasible reasoning include the work of Amgoud and
Vesic (Amgoud and Vesic 2010), studying the problem of
handling inconsistency using argumentation with priorities
over sentences, and (Zhang et al. 2010), who have adapted
the approach of (Besnard and Hunter 2008) to Description
Logic and have proposed an argumentation-based operator
to repair inconsistencies. Our approach differs from these
works in that it starts with providing an alternative under-
standing of Propositional Logic in argumentation terms on
which to base any further development of reasoning with in-
consistent or defeasible theories. In comparison with our
approach, these other works can be seen more as a form of
belief revision, based on argumentation, for classically in-
consistent theories rather than a re-examination of classical
logic through argumentation to provide a uniform basis for
classical and defeasible reasoning.

Conclusion and Future Work
We have presented Argumentation Logic (AL) and shown
how it allows us to understand classical reasoning in Propo-
sitional Logic in terms of argumentation. Its definition rests
on capturing semantically the Reductio ad Absurdum rule
through a suitable notion of acceptability of arguments. One
property of the ensuing AL is that the interpretation of impli-
cation is different from that of material implication. Further
results on the relationship between AL and Propositional
Logic including how AL can completely capture the entail-
ment of PL are given in (Kakas, Toni, and Mancarella 2012).

Given the significant role that argumentation has played
in understanding under a common framework NMR in AI
we have examined the problem of how we could unify clas-
sical reasoning and NMR within the framework of AL. In
this context, we have considered the following questions:
How could we use AL as the underlying logic to build a
NMR framework? Can AL with its propositional language
provide a single representation framework for classical and
defeasible reasoning without any distinctions on the type of
sentences allowed in a given theory? In particular, can we
understand AL as a NMR framework with sentences that
would behave as default rules but also as classical rules, with
a form of contrapositive reasoning with these rules allowed?
In this paper we have identified this problem and the chal-
lenges it poses, and studied these questions in the context of
examples.

Our preliminary investigation suggests the need for an ex-
tension of AL to accommodate preferences amongst sen-
tences. Many existing frameworks for NMR use, either ex-
plicitly or implicitly, preferences to capture defeasible rea-
soning, e.g. (Brewka 1994; Brewka and Eiter 2000) for De-
fault Logic (Reiter 1980). Also many frameworks of argu-
mentation rely on some form of preference between argu-
ments, e.g. (Kakas and Moraitis 2003; Kowalski and Toni
1996; Modgil and Prakken 2012) to capture a notion of (rel-
ative) strength of arguments through which the attack rela-
tion between arguments can be realized. One way therefore



to study this problem of integrating classical and defeasible
reasoning is to use some form of preference on the sentences
of AL theories, and adapt existing approaches of reasoning
with preferences to AL.

Naturally, the question arises as to where these prefer-
ences would come from. As we have suggested these could
be in the form of priority orderings which need not to be to-
tal, expressing only whatever priority information is known.
As such, these partial priority orderings can be incremen-
tally learned thus making the reasoning more complete as
more learning is performed8 In particular, for commonsense
reasoning knowledge natural preferences between types of
information (that can then be mapped into argument prefer-
ences) have already been identified, e.g. that causal infor-
mation is stronger than persistence, or that forward persis-
tence from later information is stronger than that from ear-
lier information, or that specific case information is stronger
than general information etc. Furthermore, such preference
schemas as well as more specific preferences amongst com-
monsense knowledge can be learned by exploiting the cor-
pus of information over the Web using and adapting existing
learning frameworks for semi-autonomous preference elic-
itation, e.g. (Dimopoulos, Michael, and Athienitou 2009;
Michael 2011). In fact, such learning methods can be used
more generally to learn over the Web not only the prefer-
ences but the whole of AL theories as theories of common-
sense knowledge, in line with recent studies (Doppa et al.
2011; Michael 2010; 2011) that have suggested that web-
extracted knowledge can be seen as a form of commonsense
knowledge of (default) associations between concepts.

As a consequence, a natural domain of application of AL
and its unified extension for defeasible reasoning is that of
textual entailment (Dagan, Glickman, and Magnini 2006;
Michael 2009) and text comprehension more generally. This
is a challenge for testing and evaluating the suitability of AL
and more generally the argumentation perspective for au-
tomating commonsense reasoning. We have already begun
to investigate this in the particular context of Narrative Test
Comprehension (Mueller 2002) where we are interested in
the specific form of textual entailment of elaborative infer-
ences from the (relevant) background commonsense knowl-
edge, expressed as unified extended AL theories, under the
narrative information given in a story text (Diakidoy et al.
2013).

Appendix: Natural Deduction
We use the following rules, for any φ, ψ, χ ∈ L:

∧I :
φ, ψ

φ ∧ ψ
∧E :

φ ∧ ψ
φ

∧E :
φ ∧ ψ
ψ

∨I :
φ

φ ∨ ψ

∨I :
ψ

φ ∨ ψ
→I :

dφ . . . ψc
φ→ ψ

¬E :
¬¬φ
φ
¬I :

dφ . . .⊥c
¬φ

8Note that in most argumentation approaches when priority in-
formation is missing from an argumentation theory this generally
gives a form of non-determinism preventing to draw sceptical con-
clusions: arguments and counter-arguments have the same strength
and hence the argumentation reasoning cannot arbitrate between
them.

∨E :
φ ∨ ψ, dφ . . . χc, dψ . . . χc

χ
→ E :

φ, φ→ ψ

ψ
where dζ, . . .c is a (sub-)derivation with ζ referred to as the
hypothesis. ¬I is also called Reduction ad Absurdum (RA).

Appendix: Proof of theorem 1
We will use the following lemma:

Lemma 1 For any theory T ⊆ L and for any set of sen-
tences ∆ ⊆ L such that T ∪∆ is directly consistent,

if NACCT ({φ},∆) holds
then there exists a RAND derivation of ¬φ from T ∪∆.

Proof of lemma 1: We use induction on the number of it-
erations of the NT operator whose least fixed point defines
NACCT (see definition 5).

Base Case: NACCT ({φ},∆) holds at the first iteration of
NT . Then, there existsA such thatA attacks {φ} (namely
T ∪ A ∪ {φ} `MRA ⊥) and A ⊆ ∆ ∪ {φ}. Thus, T ∪
∆ ∪ {φ} `MRA ⊥ and, trivially, there exists a RAND
derivation dφ . . .⊥c (with no RAND sub-derivations) of
¬φ from T ∪∆.

Induction Hypothesis: For any ψ ∈ L, for any E such that
T ∪ E is directly consistent, if NACCT ({ψ}, E) holds
after k iterations ofNT , then there exists a RAND deriva-
tion of ¬ψ from T ∪ E .

Inductive Step: AssumeNACCT ({φ},∆) holds after k+
1 iterations ofNT , for some ∆ such that T ∪∆ is directly
consistent. Then there exists A such that

(i) A attacks {φ} (namely T ∪ A ∪ {φ} `MRA ⊥), but
A 6⊆ ∆ ∪ {φ}; and

(ii) for each defence D against A, NACCT (D,∆ ∪ {φ})
holds after k iterations of NT .

Since A 6⊆ ∆ ∪ {φ}, A 6= {}. Also, by compactness
of `MRA (holding by compactness of `), we can assume
that A is finite. Let A = {ψ1, . . . , ψn}. Then, Di =
{¬ψi}, for any i = 1, . . . , n, is a defence against A and
hence satisfies property (ii) above, i.e. NACCT (Di,∆∪
{φ}) holds after k iterations. Note that T ∪ ∆ ∪ {φ} is
directly consistent, as otherwise ∆ attacks {φ} wrt T and
NACCT ({φ},∆) would hold at the first iteration.
Hence, by the induction hypothesis, there exists a RAND
derivation of ¬¬ψi, for any i = 1, . . . , n. from T ∪
∆ ∪ {φ}. We can construct a RAND derivation, d, of
¬φ from T ∪ ∆, with top derivation d : dφ . . .⊥c using
the RAND derivations of ¬¬ψi from T ∪∆∪{φ} as child
sub-derivations. Note that in the top derivation we can use
the ¬E rule to derive ψi from each ¬¬ψi, and hence, by
definition of the attack A, the derivation d indeed leads
directly to inconsistency from T ∪∆.
The resulting d is a RAND derivation of ¬φ from T ∪∆
as any use of φ in the sub-derivations of ¬¬ψi from T ∪
∆ ∪ {φ} can now be replicated using the copy operation
of φ from the top derivation d. QED

To prove the theorem, assume now that NACCT ({φ}, {})
holds. Directly from lemma 1 with ∆ = {}, if T is directly
consistent then there is a RAND derivation d of ¬φ from T .
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